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Abstract

A firm buys data from consumers to learn about some uncertain state of the world. There

are data externalities, whereby data of some consumers reveal information about other con-

sumers’ data. I characterize data externalities that maximize or minimize consumer surplus

and the firm’s profit. I use the result to solve an information design problem in which the firm

chooses what information to buy from consumers, balancing the value and price of informa-

tion. The firm collects no less information than the efficient amount. In some cases we can

solve the firm’s data collection problem with a two-step concavification method.
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1 Introduction

Digital platforms, such as Facebook and Google, collect data from users, learn their characteristics,

and personalize services and advertising. Biotechnology companies collect genetic information to

assess people’s health risks. Carmakers collect driving data through vehicles to predict the behavior

of a human driver. What is common in these examples is that a firm collects data from consumers

to learn about some uncertain state of the world.

Motivated by the examples, I study a model of data collection: A firm wants to learn about an

uncertain state of the world. There are n consumers, and each consumer i has data represented by

a Blackwell experiment µi about the state. The game consists of two stages. First, the firm offers

prices to buy data. Second, each consumer i decides whether to sell her data µi without observing

the state or the signal drawn from µi. The payoffs of the firm and consumers depend on monetary

transfers and what information the firm learns about the state—e.g., the firm may use data to learn

about consumers’ tastes and customize its product.

The main question is how data collection affects the firm and consumers. The key idea is that

how the firm and consumers divide the surplus created by data depends on data externalities—i.e.,

what information each consumer’s data reveal about other consumers’ data. As a result, the impact

of data collection depends on what kind of data externalities consumers impose on each other.

To highlight the idea, I begin with the following problem: Fix any experiment µ0 about the

state, which represents the aggregate data. A profile of n experiments (µ1, . . . , µn), which I call

the allocation of data, summarizes what data the consumers hold and how they are correlated. The

allocation of data is feasible if it contains the same information about the state as aggregate data µ0.

For any fixed µ0, I ask which feasible allocation of data maximizes or minimizes the equilibrium

consumer surplus and the firm’s profit.

Section 4 characterizes the best and worst allocations of data under a few different assumptions

on consumer preferences. First, I assume that all consumers are worse off if the firm learns more

about the state. Consumer welfare is minimized and the firm’s profit is maximized if consumers

hold “substitutable” data, where the data of any n − 1 consumers perfectly reveal information

about the remaining consumer’s data. In such a case, from each consumer i’s perspective, other

consumers’ data already reveal what i would prefer to hide. As a result, the firm can collect all
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data at a price of zero. In contrast, consumer surplus is maximized and the firm’s profit is mini-

mized if consumers hold “complementary” data, where the data of any n−1 consumers are totally

uninformative, but the data of all n consumers jointly reveal the same information as µ0. The

firm then compensates consumers for collecting data because each consumer’s data contribution is

pivotal. For any given µ0 I construct feasible allocations of data that are substitutable or comple-

mentary. Second, if all consumers benefit from the firm learning the state, we obtain the opposite

result—e.g., consumer welfare is maximized when they hold substitutable data. Finally, I extend

the consumer-worst outcome to any consumer preferences.

Section 5 allows the firm to choose what information (µ1, . . . , µn) to buy from consumers

without the feasibility constraint. The firm can buy data at lower prices by collecting more data and

suitably designing data externalities between consumers. For any consumer preferences, the firm

collects no less information about the state than the efficient amount, and the profit-maximizing

data collection makes all consumers worse off compared to no data collection. Under a certain

condition, we can solve the firm’s problem with a concavification method.

Section 6 applies the results to a setting in which the firm uses data to price discriminate con-

sumers in a product market. In the spirit of Bergemann et al. (2015b), I characterize all pairs of the

firm’s profits and consumer surpluses across all allocations of data. Data externalities drastically

expand the set of possible outcomes.

The paper relates to recent work that studies the welfare impacts of data externalities (Easley

et al., 2018; Acemoglu et al., 2019; Bergemann et al., 2019; Choi et al., 2019).1 In particular,

Acemoglu et al. (2019) and Bergemann et al. (2019) study a firm that buys information from

consumers to learn about their types. There are two main differences between these papers and my

paper. First, these papers assume that consumers’ types and signals follow normal distributions. In

contrast, I allow any information structure to study new questions, such as the firm’s data collection

problem under arbitrary consumer preferences and the characterization of the consumer-optimal

outcome. Second, Acemoglu et al. (2019) and Bergemann et al. (2019) mainly consider data

collection that harms consumers, but I allow more general consumer preferences. The relaxation

reveals that a certain data externality protects consumers from the firm’s monopsony power in the

1Earlier works that consider externalities in information sharing include MacCarthy (2010) and Fairfield and Engel
(2015).
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data market.

The paper also relates to the broad literature on information markets. One branch of the liter-

ature studies the optimal collection and sales of personal data (e.g., Admati and Pfleiderer 1986,

Taylor 2004, Calzolari and Pavan 2006, Eső and Szentes 2007, Babaioff et al. 2012, Bergemann

et al. 2015a, Hörner and Skrzypacz 2016, Bergemann et al. 2018, Agarwal et al. 2019, Ichihashi

forthcoming). Another branch studies the optimal use of data such as price discrimination and

targeting (e.g., Conitzer et al. 2012, De Corniere and De Nijs 2016, Ali et al. 2019, Madio et al.

2019, Montes et al. 2019, Bonatti and Cisternas 2020, De Corniere and Taylor 2020). Relative to

the literature I simplify how a firm uses data but focus on general data externalities.

2 Model

The set of consumers is N = {1, 2, . . . , n}. A firm wants to learn about the state of the world,

X ∈ X . The set X is finite, and all players share a common prior belief about X . Given any

finite set S of realizations, I call any function µ : X → ∆S an experiment.2 Let Σ denote the set

of all experiments with finite realization spaces. Given any µ ∈ Σ, let 〈µ〉 ∈ ∆∆X denote the

distribution of posteriors induced by the prior and µ. We say that µ is more informative than µ′ if

〈µ〉 is a mean preserving spread of 〈µ′〉, and write it as µ � µ′ (Blackwell, 1953).

The aggregate data is an experiment µ0. An allocation of data is a profile of n experiments

µ = (µ1, . . . , µn) : X → ∆SN , where µi represents consumer i’s data. GivenX ∈ X , realizations

from (µ1(X), . . . , µn(X)) may not be independent. An allocation of data µ is feasible (with

respect to µ0) if 〈µ〉 = 〈µ0〉. For any µ0 ∈ Σ, let F(µ0) denote the set of all allocations of data

that are feasible with respect to µ0. I describe the game by taking allocation µ as exogenous, then

study how the equilibrium depends on µ.

The game consists of two stages. In the first stage the firm chooses a price vector p =

(p1, . . . , pn) ∈ Rn, where pi is the price offer to consumer i. Each consumer i privately ob-

serves pi. A negative price pi < 0 is a transfer from consumer i to the firm. In the second stage,

all consumers simultaneously decide whether to sell their data. Specifically, let ai ∈ {0, 1} denote

the data-sharing decision of consumer i with ai = 1 corresponding to sharing. Denote the profile

2∆S denotes the set of all probability distributions over S.
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of sharing decisions by a = (a1, . . . , an). LetNa = {i ∈ N : ai = 1} denote the set of consumers

who sell their data under a. Given Na the firm acquires experiment µa = (µi)i∈Na : X → ∆SNa .

All players move before X is realized and have no private information about X .

A profile of data-sharing decisions other than consumer i is denoted by a−i ∈ {0, 1}n−1, and

1−i denotes a−i such that all consumers but i sell their data. For a ∈ {0, 1}, (a, a−i) denotes the

profile of data-sharing actions such that consumer i chooses a and other consumers choose a−i.

Finally, µ−i denotes µ(0,1−i).

All players maximize their expected payoffs, and ex post payoffs are as follows. If the firm

collects data µa, it obtains a payoff of π(〈µa〉)−
∑

i∈N aipi, and each consumer i obtains a payoff

of ui(〈µa〉) + aipi. The functions π(·) and (ui(·))i∈N are defined on ∆∆X . For simplicity, write

π(〈µ〉) and ui(〈µ〉) as π(µ) and ui(µ). We normalize π(µ∅) = ui(µ∅) = 0, where µ∅ is an

uninformative experiment (i.e., 〈µ∅〉 is degenerate at the prior).

The firm prefers more information: If µ � µ′, then π(µ) ≥ π(µ′). For example, suppose

that the firm collects data, learns about the state, then chooses some payoff-relevant action. In

such a case, π(µ) is the firm’s expected payoff in the (unmodeled) decision problem when it acts

optimally based on information µ.

The solution concept (“equilibrium”) is perfect Bayesian equilibrium (PBE) in which con-

sumers hold passive beliefs—i.e., each consumer i’s belief about p−i does not depend on what

price the firm offers to i, on and off the equilibrium paths.3 Section 4.4 discusses the role of

passive beliefs and the robustness of the results.

The following notions simplify exposition. Consumer surplus refers to the sum of the expected

payoffs of all consumers. Given an allocation of data µ, let E(µ) denote the set of all equilibria.

Definition 1. Fix any experiment µ0 ∈ Σ. An allocation of data µ∗ maximizes (respectively,

minimizes) consumer surplus with respect to µ0 if µ∗ ∈ F(µ0), and there is an equilibrium E∗ ∈

E(µ∗) such that for any µ ∈ F(µ0) and any E ∈ E(µ), consumer surplus at E∗ is weakly greater

(respectively, smaller) than the one at E.

Analogously, I define an allocation of data that maximizes or minimizes the firm’s expected

payoff. Definition 1 fixes µ0, so we can compare two markets that have the same aggregate data
3I allow mixed strategy PBE, but the assumption of passive beliefs excludes mixed strategy equilibrium in which

the firm offers prices that are not independent across consumers.
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and different data externalities between consumers.

According to Definition 1, E(µ∗) may contain multiple equilibria, and we select an equilibrium

E that maximizes or minimizes consumer surplus. Section 4.4 discusses when the results do not

depend on how we choose an equilibrium from E(µ∗).

If there is a single consumer, the equilibrium is efficient and the firm extracts full surplus. The

result follows from the standard argument of monopoly pricing with inelastic demand.

Claim 1. Suppose n = 1 and the consumer holds data µ0. In any equilibrium, consumer surplus

is zero and the firm obtains a payoff of max {0, π(µ0) + u1(µ0)}.

3 Substitutable and Complementary Allocations of Data

We now turn to the market with multiple consumers (n ≥ 2). I introduce two allocations of data

that are useful for describing the results.

Definition 2. An allocation of data µ is perfectly substitutable if for any i ∈ N , 〈µ〉 = 〈µ−i〉.

Definition 3. An allocation of data µ is perfectly complementary if for any i ∈ N , 〈µ−i〉 = 〈µ∅〉,

where µ∅ is an uninformative experiment.

An allocation of data is perfectly substitutable if the marginal value of individual data is zero. It

captures a situation in which a firm can perfectly learn about one consumer from the data of other

consumers. A perfectly complementary allocation of data is such that the marginal value of indi-

vidual data equals the value of the entire dataset. In such a case, the dataset is valueless if the data

of any single consumer is missing. Perfect complementarity captures increasing returns to scale,

whereby the data of some consumers increase the marginal value of data on other consumers.4 If

n = 2, the definitions satisfy the complementarity and substitutability of experiments in Börgers

et al. (2013). For any aggregate data µ0 we can find a feasible allocation of data that is perfectly

substitutable or complementary.

Lemma 1. Suppose n ≥ 2, and take any experiment µ0 ∈ Σ as the aggregate data.

4Arrieta-Ibarra et al. (2018) offer an insightful discussion on when data may exhibit increasing or decreasing
returns to scale.
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1. There is a feasible and perfectly substitutable allocation of data.

2. There is a feasible and perfectly complementary allocation of data.

Proof. Take any experiment µ0 : X → ∆Y . For Point 1, take an allocation of data (µ∗1, . . . , µ
∗
n)

such that µ∗i = µ0 for all i ∈ N . We have 〈µ∗〉 = 〈µ∗−i〉 = 〈µ0〉 because the firm observes the

same realization Y ∈ Y across all µ∗i ’s with probability 1.

For Point 2, we use the secret sharing algorithm of Shamir (1979). It provides a set S and a

function ν : Y → ∆Sn such that for any distribution over Y , ν−i is uninformative about a realized

Y ∈ Y for any i ∈ N , but ν is perfectly informative about Y (here, ν−i is the experiment created

from ν by omitting the i-th experiment). Define µ∗ : X → ∆Sn as a composite of µ0 and ν: For

any X ∈ X , µ∗(X) draws Y according to µ0(X) ∈ ∆Y , then draws (S1, . . . , Sn) ∈ Sn according

to ν(Y ) ∈ ∆Sn. Consumer i’s data µ∗i reveals Si. The experiment µ∗ is perfectly complementary

and satisfies 〈µ∗〉 = 〈µ0〉.

If n = 2, we can construct complementary signals as follows.5 Take any µ0 : X → ∆Y

with Y = {1, 2, . . . ,m}. We decompose µ0 into two experiments, µ1
0 and µ2

0: First, independently

of the state X , µ1
0 draws a permutation α of 1, 2, . . . ,m uniformly randomly from the set of all

the permutations. Second, given the realized permutation α, µ2
0 draws signal realization α(Y )

whenever µ0 draws Y ∈ Y . The allocation (µ1
0, µ

2
0) is perfectly complementary and contains the

same information as µ0.6 Intuitively, µ1
0 provides a dictionary that interprets the signal drawn from

µ2
0, so we need µ1

0 to learn about the state from µ2
0.

An economic example of a complementary allocation is as follows: Suppose consumer 1 is a

seller, whose type θS is −1 or 1. Consumer 2 is a buyer, whose type θB is −1 or 1. For example,

θS is the horizontal characteristics of the seller’s product, and θB is the buyer’s taste. A firm, such

as a platform, tries to learn the match quality, X = θS · θB. Suppose θS and θB are independently

distributed with the uniform prior P(θS = 1) = P(θB = 1) = 0.5. If the buyer and the seller have

signals that respectively reveal θB and θS , it is a perfectly complementary allocation: Knowing θB

or θS alone provides no information about the match quality.
5Shamir’s algorithm uses the polynomial interpolation.
6Suppose we only have µ2

0 and observe realization Y ∈ Y . The conditional probability of X given Y is

PX (X|Y ) =
PX (X)·[ 1

mµ0(1|X)+···+ 1
mµ0(m|X)]

1
mµ0(1)+···+ 1

mµ0(m)
= PX (X). Here, µ0(Y ) is the ex ante probability of Y under µ0,

and PX (X) is the prior probability of X .
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Finally, the following example, motivated by Bergemann et al. (2019), illustrates substitutabil-

ity and complementarity of data. Suppose X = (θ1, . . . , θn), where θi denotes consumer i’s type

the firm wishes to learn. Each consumer has data that reveal a noisy signal of her type: si = θi+εi.7

First, suppose that consumers have a common type and the data contain idiosyncratic noise: θi = θ

for all i, and εi is independent across i. For example, θ represents a demand parameter for the firm’s

product. The purchase history of each consumer serves as a signal of θ but contains noise such as

her idiosyncratic taste. For a large n the firm can use the data of n − 1 consumers to accurately

estimate θ, which approximates perfect substitutability. Second, suppose consumers have idiosyn-

cratic types and the data contain a common noise: θi is independent across i, and εi = ε for all i.

For example, consumers have independent values for some product, and the firm can learn about

the values from purchase histories. The data contain noise such as common traits or trends that

influence consumers’ behavior but are orthogonal to their product values. If the noise has a large

variance, the data of consumer i is nearly uninformative about θi, and the data of consumers −i

reveal nothing about θi. However, for a large n the firm can combine all data to estimate ε and then

calculate θi = si− ε. Thus the data of consumer i and that of consumers −i are complementary in

learning about θi.8

4 Welfare Implications of Data Externalities

Lemma 1 helps us find an allocation of data that maximizes or minimizes consumer surplus and the

firm’s profit. I first assume monotone consumer preferences, then generalize a part of the results.

Throughout the section we assume n ≥ 2. All omitted proofs are in the Appendix.

4.1 Harmful Data Collection

Assume that data collection harms consumers: For any experiments µ, µ′ ∈ Σ such that µ � µ′,

ui(µ) ≤ ui(µ
′) ≤ 0 for all i ∈ N .

7Assume θi and εi are independent. Bergemann et al. (2019) use a Gaussian information structure.
8The example does not formally capture Definition 3 in the following sense: Perfect complementarity requires

that the firm learns nothing about X = (θ1, . . . , θn) once the data of any consumer i is missing. In the current
example, if n is large, the data of consumers −i still provide information about θ−i. Nonetheless, the example
captures complementarity between the data of consumer i and that of consumers −i upon learning about θi.
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Proposition 1. For any aggregate data µ0 ∈ Σ, a perfectly substitutable allocation of data µ∗

minimizes consumer surplus and maximizes the firm’s profit with respect to µ0. Given µ∗, the

firm’s profit is π(µ0), consumer surplus is
∑

i∈N ui(µ0), and the prices of data are zero.

Suppose that the allocation of data is substitutable and n − 1 consumers sell their data. The

remaining consumer i is willing to give up her data for free, because she correctly believes that her

data contribution has no marginal effect on what the firm learns about the state. As a result the firm

buys data from every consumer for free, even though data collection harms consumers.

Conversely, if the allocation of data is complementary and n − 1 consumers sell their data,

the remaining consumer i faces a private cost of ui(µ0) < 0 from selling her data. The firm then

compensates each consumer according to their loss of data collection, leading to zero consumer

surplus. The outcome is best for consumers and worst for the firm, because the firm never leaves a

positive surplus to consumers when data collection harms them.

Proposition 2. For any aggregate data µ0 such that π(µ0) +
∑

i∈N ui(µ0) ≥ 0, a perfectly com-

plementary allocation of data µ∗ maximizes consumer surplus and minimizes the firm’s profit with

respect to µ0. Under µ∗, the firm pays −ui(µ0) ≥ 0 to each consumer i. Consumer surplus is zero

and the firm’s profit is π(µ0) +
∑

i∈N ui(µ0).

Section 4.4 discusses the case of π(µ0) +
∑

i∈N ui(µ0) < 0.

4.2 Beneficial Data Collection

Assume now that consumers are better off if the firm has more data: For any µ, µ′ ∈ Σ such that

µ � µ′, ui(µ) ≥ ui(µ
′) ≥ 0 for each i ∈ N . The firm may now charge a negative price to extract

surplus from each consumer, but she can always retain her data to secure a non-negative payoff.

The best and worst allocations of data are the mirror images of those under harmful data collection.

Proposition 3. For any aggregate data µ0 ∈ Σ, a perfectly complementary allocation of data µ∗

minimizes consumer surplus and maximizes the firm’s profit with respect to µ0. Under µ∗, each

consumer i pays ui(µ0) ≥ 0 and the firm extracts full surplus π(µ0) +
∑

i∈N ui(µ0).

Proposition 4. For any aggregate data µ0 ∈ Σ, a perfectly substitutable allocation of data µ∗

maximizes consumer surplus and minimizes the firm’s profit. Under µ∗, the firm collects data at a

price of zero. Consumer surplus is
∑

i∈N ui(µ0) and the firm’s profit is π(µ0).

8



Proposition 4 resembles the free-rider problem. When the allocation of data is substitutable,

consumers have low willingness to pay for having their data collected, provided other consumers

sell their data. If prices were exogenous, the incentive to free-ride would inefficiently lower the

level of data provision. However, prices are now endogenous, so the free-riding prevents the firm

from setting negative prices for collecting data. As a result, the data externality protects consumers

from the firm’s monopsony power.9

Remark 1 (The set of possible payoffs). The above results characterize the highest and lowest

payoffs of each player across all feasible allocations of data. A natural question is whether we can

use the results to characterize the entire set of possible payoffs. The answer is trivially yes if the

allocation of data can depend on some public randomization device. In such a case we can use

a random allocation of data to attain any payoff between the highest and lowest payoffs for each

player.10 Appendix D further shows that public randomization is unnecessary: For each player, we

can construct an allocation of data to attain any payoff between the bounds. However the results

do not extend to the joint characterization of possible payoff vectors. To characterize the payoff of

each player separately, we could focus on equilibria in which the firm collects data from all con-

sumers. In contrast, to characterize the set of payoff vectors, we may need to study an equilibrium

in which the firm does not collect data from some consumers. Appendix D shows an example in

which we can attain some payoff profile only when the firm does not collect data from a consumer

who incurs a high cost of selling data. In general the firm’s incentive to collect data depends on the

shape of (ui(·))i∈N and π(·) even for monotone preferences, and the characterization of possible

payoff profiles is left for future research.

Remark 2 (Non-monotone, separable payoffs). The results under monotone preferences extend

to the following setting. Suppose we can write the state as X = (XG, XB), where XG and XB are

independent. Consumers prefer the firm to learn about XG but not about XB. Formally, if the firm

acquires information µG and µB about XG and XB, respectively, then consumer i receives a gross

9The logic is similar to how free-riding by shareholders prevents the raider from capturing surplus in corporate
takeover (cf. Tirole 2010).

10As an example, suppose data collection is harmful. Suppose that the allocation of data is perfectly substi-
tutable with probability α and complementary with probability 1 − α and that this realization is observable be-
fore the firm makes an offer. By Propositions 1 and 2, the expected payoff of the firm becomes απ(µ0) + (1 −
α)
{
π(µ0) +

∑
i∈N ui(µ0)

}
= π(µ0) + (1 − α)

∑
i∈N ui(µ0). By varying α between 0 and 1, we can attain any

payoff of the firm between the best outcome and the worst outcome.
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payoff of uGi (µG)+uBi (µB). For each i, uGi (µG) increases in the informativeness of µG and uBi (µB)

decreases in that of µB. Propositions 1 - 4 extend to such a setting. For example, the consumer-

optimal allocation is the one in which consumers hold information about XG as a substitutable

allocation and information about XB as a complementary allocation. Similarly, the firm-optimal

allocation is the one in which consumers hold information aboutXG as a complementary allocation

and XB as a substitutable allocation. Appendix E provides details.

4.3 The Consumer-Worst Outcome Under General Preferences

I extend the results on the consumer-worst outcome to arbitrary preferences.

Proposition 5. Take any (ui(·))i∈N and any aggregate data µ0. There is an allocation of data

µ∗ that minimizes consumer surplus with respect to µ0. Under µ∗, the firm collects µ∗ and each

consumer i receives a payoff of minµ�µ0 ui(µ) ≤ 0.

Proof. In any equilibrium, consumer i can refuse to sell data and secure a payoff of E[ui(µ−i)],

where µ−i is an experiment the firm collects from other consumers. The expectation operator is

relevant for a mixed strategy equilibrium in which µ−i is random. Because µ−i is less informative

than µ0, we have E[ui(µ−i)] ≥ minµ�µ0 ui(µ). As a result, minµ�µ0 ui(µ) is a lower bound of

consumer i’s payoff across all feasible allocations of data and all equilibria. I construct µ∗ that

achieves minµ�µ0 ui(µ) as an equilibrium payoff of i. For each i ∈ N , pick an experiment µMIN
i ∈

arg minµ�µ0 ui(µ).11 Let νi−i = (νij)j∈N\{i} denote a perfectly complementary allocation of data

for consumers in N \ {i} such that 〈νi−i〉 = 〈µMIN
i 〉. Let ν∗ denote a perfectly complementary

allocation for n consumers such that 〈ν∗〉 = 〈µ0〉. Consider the allocation of data µ∗ such that

each consumer j has (νij)i∈N\{j} and ν∗j . Consider the strategy profile in which the firm offers

p∗i := −ui(µ0) + ui(µ
MIN
i ) to each i, and all consumers sell their data. It is optimal for consumer

i to sell her data: If i does not sell data, her payoff is ui(µMIN
i ) because other n− 1 consumers sell

data and the firm obtains νi−i. If i sells data, her gross utility is ui(µ0). Thus, p∗i is the maximum

amount that i is willing to pay. The firm has no profitable deviation, because p∗i ≤ 0 holds for all

i, and the firm cannot lower the price.

11Remark 4 provides a condition under which arg minµ�µ0
ui(µ) exists.
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The worst outcome for consumer i is that other consumers hold information minµ�µ0 ui(µ),

which minimizes i’s payoff when she refuses to sell her data. The low outside option enables

the firm to collect her data at a low price. The proof constructs a feasible allocation of data that

simultaneously minimizes the outside options of all consumers. The result implies that regardless

of the social value of data collection, it can harm all consumers under a certain data externality.

4.4 Discussion on the Multiplicity of Equilibria and Passive Beliefs

Definition 1 selects an equilibrium E∗ ∈ E(µ∗) that attains a higher consumer surplus than any

equilibrium under any feasible allocations. The definition leaves the possibility that E(µ∗) contains

another equilibrium with a low consumer surplus. For example, Proposition 4 selects an equilib-

rium in which the firm sets pi = 0 for all i. In another equilibrium the firm charges a negative price

of−ui(µ0) to consumer i and a price of zero to others, leading to a strictly lower consumer surplus

than the candidate equilibrium.

However the results are not sensitive to the equilibrium selection in the following sense. If data

collection is beneficial, we can construct a sequence (µk)k∈N of feasible allocations such that it

converges to µ∗ (in Proposition 3 or Proposition 4) and a unique equilibrium exists under each µk.

Thus we can approximate the consumer or the firm-optimal outcome with an allocation of data that

has a unique equilibrium (see Appendix B for the proof).

If data collection is harmful and π(µ0) +
∑

i∈N ui(µ0) > 0, the equilibrium is unique under

the consumer-optimal allocation of data in Proposition 2. Under the consumer-worst allocation in

Proposition 1, the equilibrium is unique if π(µ0)+ui(µ0) > 0 for some i. Given the inequality, the

firm collects data from at least one consumer. Other consumers are then willing to sell their data

for free, given the perfectly substitutable allocation. As a result the firm collects data at a price of

zero in any equilibrium.

Another restriction is that I compare perfect Bayesian equilibria with passive beliefs. Non-

passive beliefs can introduce other equilibria. For example, consumers can sustain high prices

with a belief system such that if the firm deviates to a low price, each consumer believes that the

firm collects data from other consumers in a way that increases her cost of selling data. Nonetheless

except for the consumer-optimal outcome under harmful data collection, all the results remain the
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same even if we allow non-passive beliefs (see Appendix C).

Beyond the settings we examined above, allowing non-passive belief is sometimes necessary to

ensure the existence of equilibrium. Consider the case of π(µ0) +
∑

i∈N ui(µ0) < 0 in Proposition

2. There is no equilibrium in which the firm collects data µ0, because it will then pay −ui(µ0) to

each consumer i and earn a negative profit. However, it cannot be an equilibrium that all consumers

refuse to sell data; given the passive beliefs, the firm will then deviate and collect the data of each

consumer at a small positive price. Indeed, under a mild condition there is no equilibrium with

passive beliefs under a complementary allocation of data. At the same time, once we relax the

passive belief assumption, we can find an equilibrium with no data collection:

Claim 2. Assume that data collection is harmful and the allocation of data is perfectly comple-

mentary. Suppose π(µ0) +
∑

i∈N ui(µ0) < 0. There is a perfect Bayesian equilibrium in which

consumers do not have passive beliefs, the firm collects no data, and all players obtain zero payoffs.

In addition, if π(µ0) + mini∈N ui(µ0) > 0, there is no equilibrium with passive beliefs.

Remark 3 (Restriction on the firm’s strategy). We have assumed that the firm chooses whether

to collect each consumer’s data µi but it cannot request part of the data (i.e., a garbling of µi).

Depending on the allocation of data the firm may benefit from doing so: For example, suppose

n = 1 and the consumer holds µ0 such that π(µ0) + u1(µ0) < 0, but there is some µ that is less

informative than µ0 and satisfies π(µ) + u1(µ) > 0. The current assumption implies that the firm

does not collect any data, but it could earn a positive profit by requesting µ. At the same time, most

of the above results are robust to the setting in which the firm can request any µ � µi from each

consumer i.12 For example, suppose data collection is harmful and consumers hold substitutable

data. In the equilibrium of Proposition 1 the firm collects all data at the lowest possible price

of zero. In such an equilibrium the firm cannot increase profit by requesting part of the data.

The equilibrium maximizes the firm’s profit and minimizes consumer surplus, even though the

firm could collect partial information under other allocations of data. Similarly, Propositions 3,

4, and 5 extend. In contrast, Proposition 2 might change if the firm could request partial data.

Under harmful data collection with the complementary allocation, the firm’s equilibrium payoff is

12Formally, the firm can offer to collect any µ̂i � µi from consumer i in exchange for pi, and consumers have
passive beliefs regarding the firm’s offers. The informativeness µ̂i � µi means that we can obtain µ̂i by garbling
signal realizations of µi.
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equal to π(µ0) +
∑

i ui(µ0), which is the total surplus from collecting µ0. If π(µ) +
∑

i ui(µ) is

maximized at some µ′ that is less informative than µ0, the firm would be better off by committing

to garble the information it collects from consumers.

5 The Firm-Optimal Data Collection

I now study the firm’s data collection problem, in which it can request any experiments from any

consumers. Although it is a strong assumption that the firm can potentially source any information,

we may view the problem as the firm’s first-best benchmark. The problem is equivalent to finding

an allocation of data that maximizes a profit without any feasibility constraint.

Definition 4. An allocation of data µ∗ globally maximizes the firm’s profit if there is an equilibrium

E∗ ∈ E(µ∗) such that for any allocation of data µ and any equilibrium E ∈ E(µ), the firm’s

expected payoff in E∗ is weakly higher than the one in E.

If there is a single consumer, any welfare-maximizing experiment µ∗ ∈ arg maxµ∈Σ π(µ) + u1(µ)

globally maximizes the firm’s profit (see Claim 1). For n ≥ 2, the following result characterizes the

firm-optimal outcome (I assume that the relevant optimization problems have solutions; Remark 4

provides sufficient conditions for it).

Proposition 6. Suppose n ≥ 2 and take any (ui(·))i∈N . Let µ∗0 ∈ Σ solve

max
µ∈Σ

(
π(µ) +

∑
i∈N

ui(µ)−
∑
i∈N

min
µi�µ

ui(µi)

)
. (1)

There is an allocation µ∗ that satisfies 〈µ∗〉 = 〈µ∗0〉 and globally maximizes the firm’s profit. The

maximum equilibrium payoff of the firm under µ∗ is (1).

Proof. In any equilibrium at which the firm acquires µ ∈ Σ, the firm’s payoff is total surplus

from µ minus consumer surplus. Proposition 5 implies that across all such situations, the lowest

consumer surplus is
∑

i∈N minµi�µ ui(µi). The firm’s maximum profit conditional on collecting

µ is then π(µ) +
∑

i∈N ui(µ) −
∑

i∈N minµi�µ ui(µi). The firm can optimize across all µ ∈ Σ,

leading to the optimal profit (1).

13



Compared to the welfare-maximizing social planner, the firm’s profit (1) contains an extra term

−
∑

i∈N minµi�µ ui(µi), which is increasing in the informativeness of µ. It captures the firm’s

inefficient incentive to collect data: By collecting more data and designing the signal structure

properly, the firm can lower the payoff of consumer i from refusing to sell data. The firm can then

collect i’s data at a lower price. As a result, the firm tends to collect too much information, and the

firm-optimal data collection never benefits consumers.

Corollary 1. The firm-optimal allocation of data in Proposition 6 has the following properties.

1. There is no efficient experiment µ∗E ∈ arg maxµ∈Σ π(µ) +
∑

i∈N ui(µ) that is strictly more

informative than all firm-optimal allocations of data.

2. Compared to no data collection, the firm-optimal data collection weakly decreases the pay-

offs of all consumers.

Proof. For Point 1, suppose that some firm-optimal allocation µ∗ is strictly less informative than

µ∗E . Because µ∗E maximizes total surplus, we have

π(µ∗) +
∑
i∈N

ui(µ
∗) ≤ π(µ∗E) +

∑
i∈N

ui(µ
∗
E).

Because µ∗E � µ∗, we have minµ′�µ∗E ui(µ
′) ≤ minµ′�µ∗ ui(µ

′), so

π(µ∗) +
∑
i∈N

ui(µ
∗)−

∑
i∈N

min
µ′�µ∗

ui(µ
′) ≤ π(µ∗E) +

∑
i∈N

ui(µ
∗
E)−

∑
i∈N

min
µ′�µ∗E

ui(µ
′).

The inequality implies that µ∗E is also a firm-optimal information, which completes the proof.

Point 2 holds because under the allocation of data that globally maximizes the firm’s payoff, each

consumer obtains an equilibrium payoff of minµi�µ∗ ui(µi) ≤ 0.

I now turn to solving the firm’s problem (1). First, if data collection harms some consumers

and benefits others, the firm collects full information:

Corollary 2. If each ui(·) is either increasing or decreasing in Blackwell’s ordering �, a solution

to the firm’s problem (1) is a fully informative experiment.
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Proof. If ui(·) is increasing in �, minµi�µ ui(µi) = ui(µ∅) = 0. If ui(·) is decreasing in �,

minµi�µ ui(µi) = ui(µ). As a result the maximand in (1) is Π(µ) := π(µ) +
∑

i∈N+
ui(µ),

where N+ is the set of i’s such that ui(·) is increasing. Because Π(·) is increasing in �, the fully

informative experiment solves the problem (1).

Second, if all consumers have the same preferences, we can solve the firm’s problem (1) using

concavification (e.g., Aumann and Maschler 1995 and Kamenica and Gentzkow 2011). To state

the result, we assume that there are functions π̂ : ∆X → R and û : ∆X → R such that for each

µ ∈ Σ, we have π(µ) =
∫

∆X π̂(b)d〈µ〉(b) and u(µ) =
∫

∆X û(b)d〈µ〉(b).13 For simplicity, we

identify π and u with π̂ and û. For any function f : ∆X → R, let V [f ] denote the concavification

of f , and let V [f ](b) denote the concavification evaluated at b ∈ ∆X .14

Corollary 3. Assume all of the n ≥ 2 consumers have the same utility function, 1
n
u(·). Given the

common prior b0 ∈ ∆X , the firm’s payoff (1) under the optimal allocation of data is

V [V [π + u]− u] (b0). (2)

Proof. Given the common preferences, we can write the firm’s problem (1) as

max
ν∈Σ

{
max
µ�ν

(π(µ) + u(µ)− u(ν))

}
. (3)

The term maxµ�ν (π(µ) + u(µ)− u(ν)) is an information design problem in which the designer

chooses µ that is more informative than ν to maximize π(µ) + u(µ)− u(ν). Appendix F shows

max
µ�ν

(π(µ) + u(µ)− u(ν)) =

∫
∆X
{V [π + u](b)− u(b)} d〈ν〉(b). (4)

As a result, (3) is written as

max
ν∈Σ

∫
∆X
{V [π + u](b)− u(b)} d〈ν〉(b), (5)

13Functions π̂ and û exist, for example, if the firm chooses some action a after learning about X from the informa-
tion collected, and the ex post payoff of each player depends only on (a,X).

14A concavification of f is the smallest concave function that is everywhere weakly greater than f . For details, see
Kamenica and Gentzkow (2011).
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which equals (2).

Under common preferences, we can obtain the firm’s optimal profit by (i) concavifying total

surplus, (ii) subtracting consumer surplus from (i), then (iii) concavifying (ii) again and evaluating

it at the prior. Step (iii) identifies the information the firm collects from all but one consumer,

which determines each consumer’s outside option. Step (i) then identifies the information the firm

collects on the equilibrium path, where all consumers sell their data. Generally the solution to

Step (iii) depends on the identity i of the consumer who refuses to sell data, but the assumption

of common preferences enables the firm to use the same information as the outside option of all

consumers. As a result the firm’s problem of choosing n offers becomes information design that

determines what information the firm will acquire if all consumers sell their data and if all but one

consumer do so. We apply Corollary 3 to an example.

Example 1. The state space is binary, i.e.,X = {0, 1}. We identify ∆X with [0, 1], where b ∈ [0, 1]

is the probability ofX = 1. Assume π(·) ≡ 0, and all consumers have 1
n
u(b). In Figure 1, the black

and red solid lines depict u and V [u] evaluated at each b ∈ [0, 1]. Figure 2 depicts V [u](b) − u(b)

and its concavification, V [V [u]− u](b).

bL bHb0
0 1βL βH

u(b)

V [u](b)

b

Figure 1: Consumer surplus u and its concavification V [u].
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b
bL bHb0

V [u]− u

V [V [u]− u]
V [V [u]− u](b0)

Figure 2: Function V [u]− u and its concavification.

Corollary 3 states that across all allocations of data and equilibria, the maximum payoff of the

firm at prior b0 is V [V [u]−u](b0) (see Figure 2). We can also derive the firm-optimal signal (i.e., µ∗0

in Proposition 6) from the two-step concavification. First, the concavification in Figure 2, which

concavifies V [u]−u, splits the prior b0 into bL and bH . Second, Figure 1, which concavifies u, splits

bL into 0 and βL, and splits bH into βH and 1. As a result, the firm-optimal signal generates four

posteriors, 0, βL, βH , and 1. Under the firm-optimal allocation, the data of any n − 1 consumers

induce posteriors bL and bH . These posteriors do not arise on the equilibrium path, but decrease

the outside option of a consumer from refusing to sell her data. Finally, the firm-optimal signal is

strictly more informative than any signal that maximizes total surplus, which induces posteriors in

[βL, βH ]. The observation conforms to Corollary 1.

Remark 4. Appendix G provides conditions under which the firm’s problem (1) has a solution.

In particular, the appendix studies a setting in which the firm learns about the state from collected

information, then takes a payoff-relevant action. In such a setting, π(µ) and (ui(µ))i∈N are the

equilibrium payoffs of the subgame in which the firm chooses an action based on the collected

information µ. The problem (1) has a solution, for example, if the firm has finitely many actions

and chooses an action according to the following tie-breaking rule: First, the firm breaks ties to

maximize the sum of the payoffs of all players on the equilibrium path. Second, it breaks ties to

minimize the payoff of consumer i whenever she unilaterally deviates and refuses to sell the data.

Such a tie-breaking rule ensures that a version of (1) has a solution, which globally maximizes the

firm’s profit.
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6 Application: Monopoly Price Discrimination

I now apply the results to a setting in which the firm uses data for price discrimination. The firm

sells a good to consumers, each of whom demands one unit. The production cost is zero. The

consumers have a common value of X to the good.15 The product value X has a finite support and

is positive with probability 1.

Given the allocation of data µ aboutX , the firm and consumers play the following game: First,

in the data market the firm chooses a price vector p, and each consumer i decides whether to sell

data µi. Second, in the product market the firm updates its belief aboutX based on the information

collected in the data market, then sets a product price t. Finally, consumers observe X and make

(identical) purchase decisions. It is without loss of generality that the firm sets the same product

price across all consumers.

Suppose that the firm pays the total amount of P for data and sets a product price of t, and m

consumers buy goods. In ex post terms, the firm’s profit and consumer surplus are mt − P and

m(X − t) + P . The average firm profit and the average consumer surplus are 1
n
(mt − P ) and

1
n
[m(X − t) + P ].

Let w̄ := E[X] denote the average total surplus under the efficient outcome. Let u∅ and π∅

denote the average expected consumer surplus and the average firm profit, when the firm buys no

information and all players behave optimally in the product market. For simplicity, assume that

the optimal product price given no information is unique, so that u∅ is unique.

I characterize all possible outcomes across all allocations of data. If there is a single consumer

the firm can buy data at a price that makes her indifferent between selling and not selling data.

If she does not sell data, her payoff in the product market is u∅. As a result the consumer’s net

equilibrium payoff is always u∅; the data affect only the firm’s profit.

Claim 3. Suppose n = 1. The following two conditions are equivalent.

1. There is an allocation of data (which is equal to the aggregate data) such that the equilibrium

payoffs of the firm and the consumer are π∗ and u∗, respectively.

2. u∗ = u∅ and π∅ ≤ π∗ ≤ w̄ − u∅.
15The common value assumption simplifies exposition. The same result holds for independent and private values,

provided we allow allocations of data such that each consumer has information about the values of other consumers.
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Data externalities between multiple consumers expand the set of possible outcomes. To state

the main result, define the surplus triangle as follows.

∆ :=
{

(π, u) ∈ R2 : π + u ≤ w̄, u ≥ 0, π ≥ π∅
}
. (6)

If there are multiple consumers, any outcome in ∆ can arise.

Proposition 7. Suppose n ≥ 2. A pair (π, u) of the average profit and the average consumer

surplus can arise in some equilibrium given some allocation of data if and only if (π, u) ∈ ∆.

Proof. Suppose n ≥ 2. To show the “if” part, take any (π∗, u∗) ∈ ∆. Bergemann et al. (2015b)

construct a µ∗ ∈ Σ such that if the firm has µ∗, the resulting average outcome in the product

market is (π∗, u∗). Suppose u∗ < u∅ (resp. u∗ ≥ u∅). Proposition 1 (resp. Proposition 4) provides

an allocation of data such that the firm collects µ∗ at a price of zero. In the equilibrium, (π∗, u∗)

arises as the net average payoffs of the firm and consumers. The “only if” part holds because

consumers can secure zero payoffs by selling no data and buying nothing, and the firm can secure

π∅ by obtaining no data and set an optimal price given the prior.

Figure 3 depicts the possible outcomes for n = 1 and n ≥ 2. The surplus triangle ∆ is AEC.

The segment EC represents the firm’s profit from no data, and AC describes the total surplus

from the efficient allocation. All the values are in terms of the average across consumers. If the

market consists of a single consumer, the possible outcomes correspond to the segment BD, so the

consumer never benefits from data. In contrast if the market consists of multiple consumers, any

outcome in AEC can arise for some allocation of data.

The social planner who cares about consumer surplus should consider not only what inference

the firm can make from the aggregate data, but also how the data are initially allocated across con-

sumers. To see this, compare the following two scenarios. First, suppose the aggregate data enable

the firm to perfectly price discriminate. In such a case, consumer surplus is zero in the product

market, but the net surplus can be positive, because the firm compensates consumers for providing

data if they hold complementary data. Second, suppose that the aggregate data correspond to a

consumer-optimal segmentation in Bergemann et al. (2015b), leading to a high consumer surplus

in the product market. However, if consumer data are complementary, the firm will charge a fee in

the data market to extract the surplus that accrues to consumers in the product market.
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Figure 3: The set of possible outcomes for n = 1 (blue segment, BD) and n ≥ 2 (gray triangle,
AEC).

7 Conclusion

The paper has studied a stylized model in which a firm collects data from consumers. The wel-

fare implication of data collection depends on data externalities—i.e., what information each con-

sumer’s data reveal about other consumers’ data. Data externalities can render data collection

beneficial or harmful to consumers, regardless of its social value. If the firm can flexibly design

what information to collect, it chooses a data externality that reduces each consumer’s outside op-

tion from refusing to share data. Such a policy leads to an inefficiently high level of data collection

and harms consumers.
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Appendix

A Omitted Proofs for Section 4

Proof of Proposition 1. The existence of a feasible and substitutable µ∗ follows from Lemma 1.

Suppose that the allocation of data is µ∗ and the firm chooses pi = 0 for all i. There is an

equilibrium in which all consumers sell their data: Because µ∗ is perfectly substitutable, each

consumer is indifferent between selling and not selling her data, whenever all other consumers sell

their data. The firm does not benefit from decreasing pi because consumer i will reject it. This

equilibrium leads to the firm’s profit π(µ0) and consumer surplus
∑

i∈N ui(µ0).

To show the welfare implications, take any feasible allocation and any (possibly mixed-strategy)

equilibrium. The firm’s profit is at most π(µ0) because it cannot charge negative prices when data

collection harms consumers. Also, the equilibrium payoff of each consumer i is at least ui(µ0),

because she can refuse to sell her data. A substitutable allocation µ∗ attains these bounds.
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Proof of Proposition 2. The existence of a feasible and complementary µ∗ follows from Lemma 1.

Suppose that the firm offers each consumer i a price of −ui(µ0) and all consumers sell their data.

Because of complementarity, price −ui(µ0) is consumer i’s loss of selling her data conditional

on that other consumers sell their data. A similar argument as Proposition 1 implies this is an

equilibrium. All consumers receive zero payoffs, and the firm obtains π(µ0) +
∑

i∈N ui(µ0). The

outcome maximizes the payoff of each consumer, who never obtains a positive payoff.16 It also

minimizes the firm’s payoff because for any µ ∈ F(µ0), the firm can offer each consumer a price

of −ui(µ0) to secure π(µ0) +
∑

i∈N ui(µ0). As a result µ∗ maximizes consumer surplus and

minimizes the firm’s profit.

Proof of Proposition 3. Under µ∗, there is an equilibrium in which the firm sets p∗i = −ui(µ0) ≤ 0

for all i ∈ N and all consumers share their data. Given p∗, each consumer is indifferent between

selling and not selling her data, conditional on that all other consumers share their data. This is

an equilibrium that maximizes the firm’s profit, because the firm extracts the efficient total surplus

while giving consumers the lowest possible payoff of zero.

Proof of Proposition 4. There is an equilibrium in which the firm sets p∗i = 0 for all i and all

consumers sell their data. In particular, consumer i refuses to give data whenever the firm deviates

to a lower (i.e., negative) price, because i believes that other consumers already give their data.

The equilibrium maximizes consumer surplus and minimizes the firm’s profit because there is no

equilibrium in which the firm pays a positive price when data collection is beneficial.17

B Proofs for Section 4.4: Multiplicity of Equilibria

I impose the following restriction on consumer preferences.

Assumption 1. For any i ∈ N , any µ, µ′ ∈ Σ, and any α ∈ [0, 1], ui(α〈µ〉 + (1 − α)〈µ′〉) =

αui(〈µ〉) + (1− α)ui(〈µ′〉).

Assumption 1 holds if each consumer i has some underlying payoff ui(a,X) that depends on

the firm’s (unmodeled) action a and a realized state X . Denoting the firm’s action at a posterior
16Suppose to the contrary that there is an equilibrium in which consumer i obtains a positive payoff. It means that

the firm pays a positive price, and consumer i strictly prefers to share her data. Because she holds a passive belief, the
firm can lower the price to buy the same data, which is a contradiction.

17This observation follows from the same argument as Footnote 16.
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b ∈ ∆X by a(b), we can write ui(µ) =
∫

∆X

∫
X ui(a(b), X)db(X)d〈µ〉(b). Because ui(µ) is linear,

it satisfies Assumption 1.

B.1 Approximation Result for Proposition 3

Proposition 8. Fix any aggregate data µ0 ∈ Σ such that π(µ0) > 0. There is a sequence of

feasible allocations of data (µk)k∈N that satisfies the following.

1. For each µk, there is a unique equilibrium.

2. As k → +∞, the equilibrium consumer surplus converges to 0, and the firm’s profit con-

verges to π(µ0) +
∑

i∈N ui(µ0).

3. For each i ∈ N , as k → +∞, 〈µki 〉 weakly converges to 〈µ∅〉.

Proof. Take any perfectly complementary allocation of data µC = (µC1 , . . . , µ
C
n ) such that 〈µC〉 =

µ0. For each k ∈ N, consider the following allocation (µki )i∈N : (i) with probability 1 − 1
k
,

(µki )i∈N = µC , and (ii) with probability 1
k
, µki = µ0 or µki = µ∅ holds. Specifically, condi-

tional on (ii), one of n consumers (say i) is randomly picked with probability 1
n

, and µki = µ0

holds. For any other consumer j, µkj = µ∅ holds. Thus, given (ii), there is exactly one consumer

with µki = µ0.

Take any equilibrium, and suppose to the contrary that the firm does not collect data from (say)

consumer 1. Suppose that the firm deviates and offers p1 = ε > 0. Consumer 1 then strictly

prefers to sell data because she earns ε and benefits from the firm’s learning. Consider the positive

probability event in which (ii) is realized and µk1 = µ0. On this event, the firm’s profit strictly

increases by collecting data µk1. Thus, the above deviation is profitable for a small ε > 0, leading

to a contradiction. Given that the firm collects all data, the maximum price the firm can charge to

i is pki = −ui(µk1,1−i
) + ui(µ

k
0,1−i

) = −
(
1− 1

k
+ 1

nk

)
ui(µ0). In the unique equilibrium, the firm

charges each consumer i a non-positive price of pki , which converges to −ui(µ0) as k → +∞.

Points 2 and 3 directly follows from these observations.
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B.2 Approximation Result for Proposition 4

Proposition 9. Fix any aggregate data µ0 ∈ Σ such that π(µ0) > 0. There is a sequence of

feasible allocations of data (µk)k∈N that satisfies the following.

1. For each µk, there is a unique equilibrium.

2. As k → +∞, the equilibrium consumer surplus converges to
∑

i∈N ui(µ0), and the firm’s

profit converges to π(µ0).

3. For each i ∈ N , as k → +∞, 〈µki 〉 weakly converges to 〈µ0〉.

Proof. For each k ∈ N, consider the following allocation of data (µki )i∈N : For each realized

X ∈ X , (i) with probability 1 − 1
k
, µki = µ0 for all i ∈ N ; (ii) with probability 1

k
, only one of

n consumers, say i, has µki = µ0, and any other consumer j has µkj = µ∅ (i.e., (ii) is the same as

the one in the proof of Proposition 8). By the same argument as the proof of Proposition 8, the

firm collects data from all consumers in any equilibrium. Given that the firm collects all data, the

maximum price the firm can charge to consumer i is pki = −ui(µk1,1−i
) + ui(µ

k
0,1−i

) = − 1
nk
ui(µ0).

In the unique equilibrium, the firm charges each consumer i a price of pki , which converges to 0 as

k → +∞. Points 2 and 3 follow from the above observations.

C Equilibria with Non-Passive Beliefs

This section consists of four parts. First, I present an example in which an equilibrium with non-

passive beliefs exists under an extreme allocation of data identified in the main analysis. Second, I

present an example in which non-passive beliefs can increase the surplus bound for the consumer-

optimal outcome under harmful data collection. Third, I show that other surplus bounds do not

change even if we allow non-passive beliefs. Finally we prove Claim 2.

C.1 Example of Equilibrium with Non-Passive Beliefs

Consider harmful data collection with a perfectly substitutable allocation of data. For simplicity,

suppose all consumers have the same ui(·). Proposition 1 shows that there is an equilibrium in

which each consumer i receives a net payoff of ui(µ0), which minimizes consumer surplus.
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There is also a PBE in which one consumer (say 1) receives a payoff of zero, and other con-

sumers receive ui(µ0). To see this, consider the following strategy profile with non-passive beliefs:

The firm offers price −u1(µ0) to consumer 1, who sells her data, and it offers a price of zero to

other consumers, who do not sell their data. Whenever the firm deviates and offers a different price

to consumer i, she believes that the firm offers negative prices to all consumers j 6= i, who will

refuse to sell their data. If π(µ0) +u1(µ0) ≥ 0, this is an equilibrium. In particular, unlike the case

of passive beliefs, the firm can no longer collect data for free from consumer j 6= 1, because any

consumer who detects a deviation believes that her data provision is pivotal. In this equilibrium,

consumer surplus is greater than the equilibrium of Proposition 1, in which all consumers provide

their data for free. The example implies that the uniqueness of equilibrium discussed in Section

4.4 could fail if we allow non-passive beliefs.

C.2 Non-Passive Beliefs: Consumer-Optimal Allocation Under Harmful Data Collection

I show that the result on the consumer-optimal outcome under harmful data collection (i.e., part of

Proposition 2) fails once we allow passive beliefs. To see this, suppose the state is two-dimensional:

X = (X1, X2), where X1 and X2 are independent at the prior. For each j ∈ {1, 2}, let µ(j)

denote the experiment that fully reveals the realization of Xj and is uninformative about the other

dimension. Also, let µ(12) denote the experiment that fully reveals the state.

Consider the following payoffs: u(µ(1)) = u(µ(2)) = −1, u(µ(12)) = −4, and π(µ(1)) =

π(µ(2)) = π(µ(12)) = 9. Suppose there are two consumers, and consumers 1 and 2 hold µ(1) and

µ(2), respectively. We set µ0 = µ(12), which satisfies the assumption in Proposition 2. Consider

the following equilibrium: The firm collects data only from consumer 1 at p1 = 3 and offers a

price of zero to consumer 2. Consumer 2 has the passive belief. Consumer 1, in contrast, believes

that if the firm deviates, it collects data from consumer 2 at price (say) +∞. The firm has no

profitable deviation: If the firm decreases the price to consumer 1, she refuses to sell her data,

because she believes that consumer 2 sells her data, so consumer 1’s loss of selling her data is now

u(µ(12)) − u(µ(2)) = −3 as opposed to −1. Also, the firm does not benefit from buying data

from consumer 2, because she requires a price of at least 3, and the marginal value of the second

unit of data is zero to the firm. In this equilibrium, consumer surplus is 2u(µ(1)) + 3 = 1, which

is strictly greater than the maximum value of zero under passive beliefs.
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C.3 Non-Passive Beliefs: The Robustness of Other Surplus Bounds

All other results continue to hold even if we allow any belief systems. First, the consumer-worst

outcomes remain the same, because I derive the results based on the observations that consumers

can secure a payoff of ui(µ0) (under harmful data collection) or 0 (under beneficial data collection)

by refusing to sell data. The payoff is a lower bound of a consumer’s outside option for any beliefs,

so non-passive beliefs do not change the consumer-worst outcome. The same argument implies

that the general consumer-worst outcome in Proposition 5 and the firm-optimal data collection in

Proposition 6 remain the same. The rest of the results continue to hold, because they only use the

upper and lower bounds of possible equilibrium prices that do not depend on consumers’ beliefs:

The firm-best and the firm-worst outcomes under harmful data collection remain the same, because

the results only use the fact that the firm cannot charge negative prices but can always pay−ui(µ0)

to collect data from each consumer i. Also, the firm-worst and the consumer-best outcome under

beneficial data collection remain the same, because the firm can always collect data at a small

positive price. Finally, the firm-best outcome under beneficial data collection remains the same,

because the firm cannot charge more than ui(µ0) on each consumer i.

C.4 Proof of Claim 2

Proof. Assume π(µ0)+
∑

i∈N ui(µ0) < 0. For the first part, consider the following strategy profile:

On the equilibrium path, the firm offers a price of zero to all consumers, who refuse to sell their

data. If the firm deviates and increases a price to consumer i, then i believes that the firm offers a

greater price than −uj(µ0) and buys data from all other consumers j 6= i. This is an equilibrium:

Given the consumers’ non-passive beliefs, the firm can acquire data µ0 only by paying −ui(µ0)

or more to each consumer i, but such an offer will lead to a negative profit. As a result the firm

has no incentive to deviate. Consumers have no incentive deviate. In particular, each consumer is

indifferent between selling and not selling data on the equilibrium path.

For the second part, suppose to the contrary that there is a (possibly mixed) perfect Bayesian

equilibrium with passive beliefs. The rest of the proof consists of three steps.

Step 1: There is no positive probability event where the firm collects µ0. Suppose to the contrary

that there is a positive probability event in which all consumers sell their data. Take any i with

28



ui(µ0) < 0. Consumer i incurs a loss if the firm collects µ0, so she has to receive a positive

price with a positive probability. On such an event, the firm collects data from other consumers

−i for sure; otherwise, it would collect an uninformative signal and make a negative profit from

i, but it could then profitably deviate by offering a negative price to i. As a result, consumer i

correctly anticipates that the firm will collect data from all other consumers. To sum up, whenever

all consumers sell their data, the firm has to pay a price of at least −ui(µ0) to each consumer i.

Because π(µ0) +
∑

i∈N ui(µ0) < 0 the firm will earn a negative profit on such an event, which is

a contradiction.

Step 2: There is some consumer j who never sells data. Passive belief implies that the prices

offered to different consumers are independent, which also implies that whether consumer i sells

her data is independent across i. Thus if each consumer sells data with a positive probability, all

consumers simultaneously sell their data with a positive probability, which contradicts Step 1.

Step 3: The firm has a profitable deviation. Suppose consumer j never sells data in equilibrium.

The firm can deviate and buy data from consumer j at a price of −uj(µ0) and data from other

consumers for free. Indeed, any consumer i 6= j believes that the firm does not collect data from

consumer j and thus i’s data does not affect the firm’s inference. The deviation is profitable because

the firm’s profit increases from zero to π(µ0) + uj(µ0) ≥ π(µ0) + mini∈N ui(µ0) > 0, where the

strict inequality is by assumption. We obtain a contradiction and conclude there is no equilibrium

with passive beliefs.

D Appendix for Remark 1: The Set of Equilibrium Payoffs

This appendix provides results on the set of all equilibrium payoffs across all feasible allocations

of data. Throughout the appendix, we fix the aggregate data, µ0.

Claim 4. Consider harmful data collection with π(µ0) +
∑

i∈N ui(µ0) ≥ 0. For the firm and

consumers, any payoff between the worst and the best payoffs can arise under some data allo-

cation: For any π ∈ [π(µ0) +
∑

i∈N ui(µ0), π(µ0)], there is some feasible allocation of data

and the corresponding equilibrium in which the firm receives a payoff of π. Similarly, for any

U ∈ [
∑

i∈N ui(µ0), 0], there is some feasible allocation of data and the corresponding equilibrium

in which the consumer surplus is U .
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Proof. Take any α ∈ [0, 1]. Take a perfectly complementary allocation of data µC = (µC1 , . . . , µ
C
n )

such that 〈µC〉 = 〈µ0〉. Consider the following allocation (µ∗i )i∈N : (i) with probability α, (µ∗i )i∈N =

µC and (ii) with probability 1−α, µ∗i = µ0 for all i ∈ N . Conditional on that all consumers j 6= i

sell their data, consumer i’s utility from refusing to sell data is (1− α)ui(µ0). If she sells her data,

her utility is ui(µ0). As a result, the minimum price consumer i is willing to accept to sell her

data is p∗i = (1 − α)ui(µ0) − ui(µ0) = −αui(µ0) ≥ 0. Now, there is an equilibrium in which

the firm offers price −αui(µ0) to each consumer i and all consumers sell their data. In particular,

if the firm deviates and buys data only from consumer i, then relative to collecting all data, the

firm would lose the gross revenue of απ(µ0) and saves the total price of −α
∑

j 6=i uj(µ0). Be-

cause π(µ0) +
∑

j 6=i uj(µ0) ≥ π(µ0) +
∑

j∈N uj(µ0) ≥ 0, the firm does not benefit from such a

deviation. A similar argument implies that the firm has no other profitable deviation, and neither

do consumers. In this equilibrium, the firm’s payoff is π(µ0) + α
∑

i∈N ui(µ0), and the consumer

surplus is (1− α)
∑

i∈N ui(µ0). By moving α from 0 to 1, we obtain the result.

By the same argument as above, we obtain the following result.

Claim 5. Consider beneficial data collection. For the firm and consumers, any payoff between

the worst and the best payoffs can arise under some data allocation: For any π ∈ [π(µ0), π(µ0) +∑
i∈N ui(µ0)], there is some feasible allocation of data and the corresponding equilibrium in which

the firm receives a payoff of π. Similarly, for any U ∈ [0,
∑

i∈N ui(µ0)], there is some feasible

allocation of data and the corresponding equilibrium in which the consumer surplus is U .

The above claims characterize the set of possible payoffs for each player, separately. To do so,

we have focused on equilibria in which the firm collects data from all consumers. The following

example shows that to characterize the set of payoff vectors, we need to study equilibrium in which

the firm does not collect data from some consumers. Thus our results, which are based on equilibria

with full data collection, do not immediately apply to the full set characterization.

Example 2. The state is two-dimensional, (XY , XZ) ∈ X . Let Y and Z denote the fully infor-

mative signals for XY and XZ . There are three consumers, who have the same u(·). Let u(Y )

denote a consumer’s gross payoff when the firm obtains data Y ; analogously, define u(Z), u(Y Z),

π(Y ), π(Z), and π(Y Z). Data collection is harmful: u(Y ) = u(Z) = −0.5, u(Y Z) = −2,
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and π(Y ) = π(Z) = π(Y Z) = 7. Suppose consumers 1 and 2 hold Y as a complementary al-

location, and consumer 3 holds Z. In one equilibrium, the firm collects data from consumers 1

and 2. The firm does not collect data from consumer 3, who demands compensation of at least

u(Y ) − u(Y Z) = 1.5 > 0 = π(Y Z) − π(Y ). In this equilibrium the firm earns 6, consumers 1

and 2 earn zero, and consumer 3 earns −0.5. Claim 4 implies that the payoff of each player—say

payoff 6 for the firm—can arise given another allocation of data under which the firm collects data

from all consumers. However, the payoff vector (6, 0, 0,−0.5) leads to total surplus 5.5, which is

strictly greater than the one when the firm collects all data, i.e., 7 − 2 · 3 = 1. Thus the payoff

vector (6, 0, 0,−0.5) arises only if the firm does not collect data from some consumers.

E Appendix for Remark 2: Non-Monotone, Separable Payoffs

We impose the following structure on the baseline model. The state space is written as X =

XG × XB, where the two dimensions of the state, XG ∈ XG and XB ∈ XB, are independent

according to the prior. The aggregate data µ0 : X → ∆(SG × SB) satisfies

µ0(SG, SB|XG, XB) = µG0 (SG|XG)·µB0 (SB|XB),∀(SG, SB, XG, XB) ∈ SG×SB×XG×XB. (7)

The condition (7) restricts the kind of aggregate data we consider. However, given such µ0, we still

consider all feasible allocations of data that may not satisfy the separability condition like (7).

Take any information µ : X → ∆S the firm acquires, and let µG ∈ ∆∆XG and µB ∈ ∆∆XB
denote the distribution of posteriors induced by µ about XG and XB, respectively. The payoff of

each consumer i is uGi (µG) + uBi (µB), where uGi (µG) is increasing in the informativeness of µG,

and uGi (µB) is decreasing in the informativeness of µB. We normalize uGi (·) and uBi (·) to be zero

when they are evaluated at the uninformative experiments. The combination of Propositions 1 - 4

in the main text leads to the following result.

Claim 6. Across all feasible allocations of data, consumer surplus is minimized and the firm’s

profit is maximized if consumers hold µG0 as complementary data and µB0 as substitutable data. If

π(µ0)+
∑

i∈N u
B
i (µB0 ) ≥ π(µG0 ), consumer surplus is maximized and the firm’s profit is minimized

if consumers hold µG0 as substitutable data and µB0 as complementary data.
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Proof. We show the second part, as it is more complicated. Suppose consumers hold µG0 as sub-

stitutable data and µB0 as complementary data. Formally, consumers hold (µGi , µ
B
i )i∈N such that

〈(µGi )i∈N 〉 = 〈(µGi )i 6=j〉 = 〈µG0 〉 and 〈(µBi )i∈N 〉 = 〈µB0 〉, but 〈(µBi )i 6=j〉 is totally uninformative

for each j. Given such an allocation, there is an equilibrium in which the firm collects data from

each consumer i with price pi = −uBi (µB0 ). Suppose the firm offers (pi)i∈N and all consumers

sell their data. If consumer i unilaterally deviates and refuses to sell her data, her gross payoff

increases by −uBi (µB0 ) but she cannot receive pi. Thus she is indifferent between selling and not

selling data. The firm has no profitable deviation either. If the firm follows the above strategy, it

receives a payoff of π(µ0)+
∑

i∈N u
B
i (µB0 ) ≥ π(µG0 ) ≥ 0. If the firm deviates and collects no data,

it receives a payoff of zero. If it deviates and collects data from the set N ′ of consumers such that

|N ′| ≤ n−1, it receives a payoff of π(µG0 )+
∑

i∈N ′ u
B
i (µB0 ). (Note that passive belief implies that

even after the deviation, the firm has to pay −uBi (µB0 ) to collect data of each consumer i ∈ N ′.) In

either case, the firm’s payoff is lower than π(µ0) +
∑

i∈N u
B
i (µB0 ).

The above equilibrium (say E) maximizes consumer surplus and minimizes the firm’s profit.

To see this, take any feasible allocation of data and any equilibrium. If consumer i sells her data,

she is indifferent between selling and not selling her data given our passive belief assumption. Thus

regardless of whether consumer i sells her data, her equilibrium payoff is the one from not selling

data, which is at most uGi (µG0 ), i.e., her payoff in E. Thus equilibrium E maximizes consumer

surplus. The firm can always pay −uBi (µB0 ) to each consumer i to collect all data, so π(µ0) +∑
i∈N u

B
i (µB0 ) is a lower bound of the firm’s profit. Thus equilibrium E, which attains the lower

bound, minimizes the firm’s profit.

By the similar argument we can prove the first part: If consumers hold µG0 as complementary

data and µB0 as substitutable data, there is an equilibrium in which the firm collects all data and

consumer i pays uGi (µG0 ). Such an equilibrium minimizes consumer surplus because each con-

sumer obtains the lowest possible payoff of uBi (µB0 ). The equilibrium maximizes the firm’s profit

because it cannot charge more than uGi (µG0 ) for collecting data.
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F Appendix for the Proof of Corollary 3

We identify µ with 〈µ〉. We prove equation (4), which is equivalent to

max
µ�ν

∫
∆X

f(b)dµ(b) =

∫
∆X
V [f ](b)dν(b), (8)

where f = π + u. First, by the definition of V [f ], we can find a mean-preserving transition kernel

Q : b 7→ Q(·|b) ∈ ∆∆X such that18

∫
∆X
V [f ](b)dν(b) =

∫
∆X

∫
∆X

f(β)dQ(β|b)dν(b) =

∫
∆X

f(b)dµ′(b),

where µ′(·) :=
∫

∆X Q(·|b)dν(b). Because µ′ � ν, we have

max
µ�ν

∫
∆X

f(b)dµ(b) ≥
∫

∆X
V [f ](b)dν(b). (9)

To show the converse, take any µ � ν. Given a mean-preserving transition kernel Q that satisfies

µ(·) =
∫

∆X Q(·|b)dν(b), we have

∫
∆X

f(b)dµ(b) =

∫
∆X

∫
∆X

f(β)dQ(β|b)dν(b) ≤
∫

∆X
V [f ](b)dν(b),

which implies (8).

G The Existence of a Solution to Problem (1)

I provide conditions under which the firm’s problem (1), which is written as

max
µ∈Σ

{
π(µ) +

∑
i∈N

ui(µ) +
∑
i∈N

max
µ′∈G(µ)

(−ui(µ′))

}
, where (10)

G(µ) = {µ′ ∈ Σ : µ′ � µ} , (11)

has a solution. I identify µ ∈ Σ with a Bayes plausible element of ∆∆X and use weak∗ topology

on it. The first existence result uses the standard argument based on Berge Maximum Theorem.

18A function Q : ∆X → ∆∆X is a mean-preserving transition kernel if for all b ∈ ∆(X ),
∫

∆X βQ(dβ|b) = b.
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Claim 7. If π(·) is upper semicontinuous and (ui(·))i∈N is continuous, the problem (1) has a

solution.

Proof. We show G(·) is compact-valued and upper hemicontinuous. Let Φ ⊂ R∆X denote the set

of all continuous convex functions. By Theorem 7 of Blackwell (1953), we can write G(µ) as

G(µ) =
⋂
φ∈Φ

{
µ′ ∈ Σ :

∫
∆X

φdµ ≥
∫

∆X
φdµ′

}
=
⋂
φ∈Φ

G(φ, µ),

where G(φ, µ) =
{
µ′ ∈ Σ :

∫
∆X φdµ ≥

∫
∆X φdµ

′}. The set G(φ, µ) is compact, because Σ ⊂

∆∆X is compact and G(φ, µ) is a closed subset of it. Indeed, if (µn)n ⊂ G(φ, µ) and µn → µ0,

then
∫
φµn →

∫
φµ0 for any φ ∈ Φ, because φ is a continuous function defined on a compact set

∆X (and thus bounded). Thus, if µn → µ0 and
∫
φdµ ≥

∫
φdµn, then

∫
φdµ ≥

∫
φdµ0. This

implies µ0 ∈ G(φ, µ), so G(φ, µ) is closed.

The upper hemicontinuity of G(φ, ·) is shown as follows. Take µ̂n → µ̂ and µn → µ such that∫
φdµ̂n ≥

∫
φdµn for any n. By the similar argument as above, we get

∫
φdµ̂ ≥

∫
φdµ, and thus

µ ∈ G(φ, µ̂). Since G(φ, ·) has a closed graph and is closed-valued, it is upper hemicontinuous.

Because G(µ) is the intersection of compact-valued upper hemicontinuous correspondences, Point

2 of Theorem 17.25 of Aliprantis and Border (2006) implies that it is upper hemicontinuous.

Because the correspondence G(·) is compact-valued and upper hemicontinuous, Lemma 17.30

of Aliprantis and Border (2006) implies that
∑

i∈N maxµ′∈G(µ) (−ui(µ′)) is upper semicontinuous

in µ. The maximand of (10) then becomes upper semicontinuous, so Theorem 2.43 of Aliprantis

and Border (2006) implies a solution exists.

Claim 7 provides a condition for existence, but it may not be easy to check. For example,

suppose the firm uses a signal to learn about X , then takes a payoff-relevant action. In such a case,

π(µ) and (ui(·))i∈N are not the primitives but the payoffs from the firm’s optimal behavior.

We now provide a condition for existence when the firm uses information to choose an action.

Consider the following three-stage game: First, the firm sets prices to buy data. Second, consumers

decide whether to sell their data. Finally, the firm chooses an action a from a subset A of Rm. Let

π(a,X) and ui(a,X) denote the ex post gross payoffs of the firm and consumer i if the firm
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chooses a ∈ A and the realized state is X . The solution concept is perfect Bayesian equilibrium.

Abusing terminology, we say that an allocation of data µ∗ globally maximizes the firm’s profit

if µ∗ satisfies Definition 4, where “equilibrium” there now refers to equilibrium of this extended

game.

We prepare some notations. For each posterior b ∈ ∆X , let ai(b) denote the firm’s best re-

sponse that breaks ties to minimize consumer i’s expected payoff. Also, let aN (b) denote the

firm’s best response that breaks ties to maximize the sum of the expected payoffs of all players.

(The assumptions stated in the following results ensure that these best responses exist). Define

πN (µ) :=
∫

∆X π(aN (b), b)dµ, uNi (µ) :=
∫

∆X ui(a
N (b), b)dµ, and uii(µ) :=

∫
∆X ui(a

i(b), b)dµ.

Given the tie-breaking rules, the problem similar to (10) has a solution and provides the firm-

optimal data collection.

Claim 8. If the firm’s action space A is finite, then

max
µ∈Σ

{
πN (µ) +

∑
i∈N

uNi (µ) +
∑
i∈N

max
µ′∈G(µ)

(
−uii(µ′)

)}
(12)

has a solution, µ∗0. There is an allocation of data µ∗ such that 〈µ∗〉 = 〈µ∗0〉 and µ∗ globally

maximizes the firm’s profit.

The result is a special case of the following.

Claim 9. Suppose the firm’s action space A ⊂ Rm is compact, and π(·, X) and ui(·, X) are

continuous on A for any given X . The problem (12) has a solution, µ∗0. There is an allocation of

data µ∗ such that 〈µ∗〉 = 〈µ∗0〉 and µ∗ globally maximizes the firm’s profit.

Proof. First, we show the following result: Take any function v(a,X). Let av(b) denote the

firm’s best response at each posterior b ∈ ∆X such that it breaks ties to maximize v(a, b) :=∫
X v(a,X)db(X). Then, v(av(b), b) is upper semicontinuous. To show this result, suppose to the

contrary that there is an ε > 0 and {bn} ⊂ ∆X such that bn → b but v(av(bn), bn) ≥ v(av(b), b)+ε

for all n ∈ N. Because A is compact, we can find a subsequence of (av(bn))n that converges to

(say) a′. We have

v(av(b), b) ≥ v(a′, b) ≥ v(av(b), b) + ε, (13)
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which is a contradiction. Thus, v(av(b), b) is upper semi-continuous on ∆X .

The above observation implies that πN (µ) +
∑

i∈N u
N
i (µ) is upper semicontinuous in µ. Also,

because the tie breaking that minimizes consumer i’s payoff is equivalent to the one that maximizes

−ui, −uii(µ′) is upper semicontinuous in µ′. Lemma 17.30 of Aliprantis and Border (2006) then

implies that maxµ′∈G(µ) (−uii(µ′)) is upper semicontinuous in µ. Therefore, the maximand of (12)

is upper semicontinuous, and the problem has a solution.

By the construction of πN (µ) and (uNi (µ), uii(µ))i∈N and the same argument as Proposition 6,

any solution of (12) has the associated allocation of data µ∗ that gives the firm a payoff equal to

(12). In the (firm-optimal) equilibrium under µ∗, the firm breaks ties to minimize consumer i’s

payoff whenever she refuses to sell her data, and the firm breaks ties to maximize the total surplus

on the equilibrium path.

The allocation µ∗ globally maximizes the firm’s profit. To see this, take any allocation µ and

equilibrium E ∈ E(µ). Without loss of generality, assume that all consumers sell their (possibly

empty) data in equilibrium. We modify E so that upon choosing a, the firm breaks ties to min-

imize the payoff of a consumer who has refused to sell data; if all consumers sell their data, the

firm breaks ties to maximize the sum of the payoffs of all players. Correspondingly the firm offers

a price that makes each consumer indifferent between selling and not selling her data. The modi-

fication increases total surplus and decreases consumer surplus, so it creates a new strategy profile

that gives the firm a weakly greater payoff. The firm’s payoff under the new strategy profile is the

maximand of (12) evaluated at µ. Therefore, the firm is better off under an equilibrium of µ∗ than

any E ∈ E(µ).

H The Proof of Claim 3

Proof. Suppose Point 1 holds. u∗ ≥ u∅ holds because the consumer can secure u∅ by not sharing

data. Suppose to the contrary that u∗ > u∅, which means that the consumer shares data (say)

µ∗. Let uµ∗ denote the consumer’s payoff in the product market given data µ∗. Let p∗1 denote the

equilibrium transfer from the firm to the consumer for data. Since u∗ = uµ∗ + p∗1 > u∅, the firm

can slightly lower p∗1 to strictly increase its profit while collecting µ∗. This is a contradiction, and

thus u∗ = u∅. The sum of the payoffs of the consumer and the firm is at most w̄, and the firm can
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always choose to not collect data. Thus, π∅ ≤ π∗ ≤ w̄ − u∅.

Suppose Point 2 holds. I write πµ for the firm profit in the product market given µ ∈ Σ.

Bergemann et al. (2015b) shows that there is a µ∗ ∈ Σ such that uµ∗ = u∅ and πµ∗ = π∗. Consider

the following strategy profile: The seller sets p1 = 0 and the consumer sells data. Regardless of

whether the consumer sells data, the firm sets a price optimally to achieve (π∗, u∅) in the product

market. This consists of an equilibrium. In particular, the consumer is willing to share data because

doing so does not change her payoff in the product market.
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