Abstract

I study a dynamic model of consumer privacy and platform data collection. In each period, consumers choose their level of platform activity. Greater activity generates more information about the consumer, thereby increasing platform profits. Although consumers value their privacy, the platform can collect information by gradually lowering the level of privacy protection. In the long run, consumers become “addicted” to the platform: They lose privacy and receive low payoffs, but choose high activity levels. I study the implications of these dynamics on the platform’s business model and its commitment power regarding the future privacy policy.

Keywords: personal information; consumer privacy; privacy paradox; data policy; gradualism
JEL Classification: D44, D82, D83.
1 Introduction

Online platforms, such as Amazon, Facebook, Google, and Uber, analyze user activities and collect a large amount of data. The data collection may improve their services and benefit consumers. At the same time, it raises concerns for consumers and policymakers, highlighted by recent privacy scandals and data breaches, such as the Cambridge Analytica data scandal.¹

As an example, consider a consumer (she) and a social media platform (it). The consumer writes posts and reads news on the platform. The platform analyzes her activity and collects data such as her race, location, and political preferences. The platform can then generate revenue—e.g., via improved targeted advertising. The consumer faces a trade-off: On the one hand, she enjoys the services provided by the platform. On the other hand, she may value her privacy and be concerned about the risk of data leakage, identity theft, and price or non-price discrimination. Such risks are the “privacy costs” of using the platform. If the consumer anticipates a high privacy cost, she may use the platform less actively or may not join it. The platform can influence her decision through its privacy policy—e.g., Facebook committed to not use cookies to track users.²

I model such a situation as a dynamic game between a consumer and a platform. In each period, the consumer chooses her level of platform activity. Based on the level of activity, the platform observes a signal about the consumer’s time-invariant type. The informativeness of the signal is increasing in the activity level, but decreasing in the platform’s privacy level, which specifies the amount of noise added to the signal. The platform’s profit is increasing, but the consumer’s payoff is decreasing in the amount of information the platform has collected. As a result the consumer chooses activity levels that balance the benefits of the service and the privacy costs. Anticipating her behavior, the platform chooses privacy levels. In the baseline model, it commits to future privacy levels at the beginning of the game.

The main idea is that the consumer has a decreasing marginal privacy cost—i.e., when the consumer has less privacy, she faces a lower marginal privacy cost of using the same platform.

¹For example, “a majority of Americans report being concerned about the way their data is being used by companies” in a survey conducted by Pew Research Center. See https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-
²In 2004, Facebook’s privacy policy stated that “we do not and will not use cookies to collect private information from any user.” https://web.archive.org/web/20050107221705/http://www.thefacebook.com/policy.php (accessed on July 31, 2020)
For example, if Google already knows a lot about a consumer, she might not care about letting Google Maps track her location today. In an extreme case, if the platform knows everything, the consumer faces a marginal privacy cost of zero, because her activity no longer affects what the platform knows about her type.

The main finding is that because of the decreasing marginal cost of losing privacy, a farsighted consumer eventually gives up all of her privacy, even when she anticipates future privacy choices of the platform. To induce such an outcome, in early periods the platform commits to not collect too much data. By doing so, it encourages the consumer to use the service and generate information when she has not yet lost her privacy. At the same time, the platform always collects full information in the long run. By committing to do so, the platform not only increases future profits but encourages the consumer to generate more information in early periods: Indeed, the consumer who anticipates future privacy loss faces a lower marginal privacy cost today and uses the platform more actively. As a result, in the long run, the consumer loses privacy and chooses a high activity level, regardless of discount factors and the consumer’s value of privacy.

I first establish the above result when the platform’s revenue depends only on information. However, the main insight holds even if revenue depends on the consumer’s activity. We might think that if the platform’s revenue comes mainly from consumer activity, it should refrain from collecting data to encourage the activity of consumers who have privacy concerns. On the contrary, the platform collects data to reduce the consumer’s marginal privacy cost and increase her future activity levels. As a result even if the platform’s revenue comes mainly from consumer activity, it may collect as much information as a data-driven platform.

I then study the role of the platform’s commitment power regarding its future privacy choices. The baseline model assumes that the platform can commit to future privacy levels, in which case it collects information by committing to high privacy protection in early periods. Under a certain condition, the platform can implement the same policy as long as it has one-period commitment power. However, when the platform has weaker commitment power, there is also an equilibrium in which it offers the highest privacy protection and fails to collect any information. Such an equilibrium captures the platform’s Coasian commitment problem.

The paper has implications for consumer privacy. First, the consumer’s long-run behavior (in the equilibrium with data collection) is consistent with the so-called privacy paradox: Consumers
express concern about their privacy, but actively share data with third parties (Acquisti et al., 2016). The platform’s equilibrium strategy rationalizes how online platforms, such as Facebook, seem to have expanded the scope of data collection. Second, my results clarify the role of commitment and expectation in data collection: Depending on consumers’ expectation about their future privacy, the platform may collect data when consumers highly value their privacy, or it may fail to collect data when consumers do not much value their privacy.

The rest of the paper is as follows. Section 2 discusses related literature, and Section 3 presents the model. Section 4 considers the platform with long-run commitment power and presents the equilibrium. Section 5 assumes the platform has one-period commitment. In particular, assuming that the consumer has binary activity level, I characterize an equilibrium that is best or worst for the consumer. Section 6 considers extensions, including the time-varying type of the consumer.

## 2 Related Literature

The paper relates to the three strands of literature. First, it relates to the growing work on consumer privacy and data collection. Several papers study models in which a platform collects data in exchange for money (Acemoglu et al., 2019; Bergemann et al., 2019; Choi et al., 2019; Easley et al., 2018; Ichihashi, 2020). In these papers the data on some consumers reveal information about others. This “data externality” could lower consumers’ private costs of providing data, leading to an inefficiently high level of data sharing at equilibrium. In my paper, the consumer’s cost of generating information is decreasing in the stock of data she provided in the past and the amount of data the platform will collect in the future. In this case, depending on the consumer’s expectation, the equilibrium may involve an inefficiently high or low level of data collection. Several papers, such as Fainmesser et al. (2019), Jullien et al. (2018), and Argenziano and Bonatti (2020), study the design of privacy regulation or policy. I add to this literature by studying the role of consumer expectation about future privacy policies.

Second, the paper relates to the literature on strategic manipulation of information. My model relates to career concern models, which originated with Holmström (1999). In career concern

---

3Bergemann et al. (2019) also consider an information structure under which the data externality renders the private cost greater than the social cost, which may lead to an inefficiently low level of data sharing.
models, a young worker, whose ability has not yet been revealed to the market, works hard to influence the market’s belief. In my model, a consumer who has not yet lost privacy uses the platform less actively to generate less information. Over time, the information about the consumer and the worker are revealed, and they have lower incentives to engage in signal jamming. Despite this connection, the two signal jamming activities are different. In career concern models, a worker cares about the market’s belief about the expected quality. Also, the market wants the worker to engage in signal jamming (i.e., higher effort), which creates a trade-off between learning about ability and motivating high efforts (e.g., Hörner and Lambert 2018). In contrast, I abstract away from belief manipulation (e.g., strategically browsing websites to convince a platform that a consumer has certain characteristics) and assume that the consumer cares about the platform’s posterior variance about their type. Also, the platform wants the consumer to engage less in signal jamming. Thus, the platform prefers to collect information not only to increase profit today, but also to induce high activity levels in the future. Many of my results stem from this complementarity between data collection and consumer activity, which is absent in career concern models. Recent papers also study how the agent’s incentive to manipulate information distorts their behavior (Frankel and Kartik, 2019b,a; Bonatti and Cisternas, 2020; Argenziano and Bonatti, 2020; Ball, 2020b). The common theme of these papers is that a certain information policy can mitigate the sender’s incentive to manipulate signals.

Finally, the paper relates to the literature on dynamic information design (e.g., Ely (2017), Smolin (forthcoming), and Ball (2020a)). This literature typically considers a policy that provides information over time to influence the agent’s behavior. In particular, Ball (2020a) highlights the importance of making future information provision contingent on past actions. In contrast, I study the dynamic collection of information when the agent’s action generates a signal about their type. The idea of the decreasing marginal privacy cost, which could make the designer’s commitment power valueless, has no counterpart in this literature.\footnote{See, e.g., Kamenica (2019) for a survey of static and dynamic information design.}

\footnote{Renault et al. (2017) assume that the receivers are short-lived, and show that a greedy disclosure policy can be optimal for the designer.}

\footnote{See, e.g., Kamenica (2019) for a survey of static and dynamic information design.}

\footnote{Renault et al. (2017) assume that the receivers are short-lived, and show that a greedy disclosure policy can be optimal for the designer.}
3 Model

I study a dynamic game between a consumer (she) and a platform (it). The consumer uses the platform’s service to receive benefits, but her use of the service generates information about her time-invariant (Gaussian) type. The platform chooses a privacy level, which is the amount of noise added to the information generated. The platform provides its service for free and monetizes information. I model payoffs in a reduced-form way: In the baseline model, the platform prefers more information and the consumer prefers less information to be collected. Appendix A microfounds such preferences, assuming that the platform sells data to third-party sellers that price discriminate the consumer.

The formal description is as follows. Time is discrete and infinite, indexed by $t \in \mathbb{N}$. The consumer’s type $X$ is drawn from a normal distribution $\mathcal{N}(0, \sigma_0^2)$. The type is realized before $t = 1$ and fixed over time. The consumer does not observe $X$. The platform does not observe $X$ either but receives signals about it.

In each period $t \in \mathbb{N}$, the consumer chooses an activity level $a_t$ from a finite set $A \subset \mathbb{R}^+$ such that $\min A = 0$ and $a_{\text{max}} := \max A > 0$. The platform then observes $a_t$ and a signal $s_t = X + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)$. The consumer does not observe the signal. A higher $a_t$ reduces the variance of $\varepsilon_t$ and makes $s_t$ more informative about $X$. Thus, $a_t$ captures a consumer’s online activity that generates data, such as browsing and posting content on social media. For a fixed $a_t$, the informativeness of the signal decreases in $\gamma_t \in \mathbb{R}^+ := \mathbb{R}_+ \cup \{\infty\}$, which is the privacy level of the platform in period $t$. A higher $\gamma_t$ implies the platform offers higher privacy protection. If $a_t = 0$ or $\gamma_t = \infty$, signal $s_t$ is totally uninformative. Random variables $X$ and $(\varepsilon_t)_{t \in \mathbb{N}}$ are mutually independent.

The payoffs are as follows. Suppose that the consumer has chosen activity levels $a_t = (a_1, \ldots, a_t) \in A^t$ and the platform has chosen privacy levels $\gamma_t = (\gamma_1, \ldots, \gamma_t) \in \mathbb{R}^t_+$ up to period $t$. At the end of period $t$, the platform receives a payoff of $\sigma_0^2 - \sigma_t^2(a_t, \gamma_t) \geq 0$, where $\sigma_t^2(a_t, \gamma_t)$ is the posterior

---

6Even if the consumer privately observes $X$, all results hold with respect to a pooling equilibrium in which consumers of all types choose the same activity level after any history. Such an equilibrium exists because the payoff of each player does not depend on a realization of $X$. Unobservable $X$ simplifies exposition without changing the results.

7All the results continue to hold even if signals are public, because the payoff of each player does not depend on the realization of a signal.
variance of $X$ given $(a_t, \gamma_t)$ and Bayes’ rule.\(^8\) A small $\sigma_t^2(a_t, \gamma_t)$ means the platform has an accurate estimate of $X$, or equivalently, the consumer has low privacy. For any $t$ and $\tau \leq t$, $\sigma_t^2(a_t, \gamma_t)$ is decreasing in $a_\tau$, increasing in $\gamma_\tau$, and independent of $s_\tau$.\(^9\) Where it does not cause confusion, I write $\sigma_t^2(a_t, \gamma_t)$ as $\sigma_t^2$. The platform discounts future payoffs with discount factor $\delta_P \in (0, 1)$.

The consumer’s flow payoff in period $t$ is $U(a_t, \gamma_t) := u(a_t) - v \cdot [\sigma_0^2 - \sigma_t^2(a_t, \gamma_t)]$. The first term $u(a_t)$ is her gross benefit of using the platform. We only assume $u(a)$ is strictly increasing in $a \in A$ and $u(0) = 0$.\(^10\) The second term $v \cdot [\sigma_0^2 - \sigma_t^2(a_t, \gamma_t)]$ is a privacy cost, which captures the negative impact of data collection on the consumer. The parameter $v \in \mathbb{R}_{++}$ captures her value of privacy; it is exogenous and commonly known to the consumer and the platform. The consumer discounts future payoffs with discount factor $\delta_C \in [0, 1)$. I normalize the payoffs so that if $a_t = 0$ for all $t$, the platform and the consumer obtain zero payoffs in all periods.\(^11\)

The informational assumptions are summarized as follows. The primitives, $\sigma_0^2, A, u(\cdot)$, and $v$, are commonly known. The past activity levels and privacy levels are publicly observable. The consumer’s type is unobservable, and the signals are observable only to the platform.

I study two games that differ in the timing of moves. One is the game of long-run commitment. In this game, before $t = 1$, the platform commits to a privacy policy $\gamma = (\gamma_1, \gamma_2, \ldots) \in \mathbb{R}^\infty$, which is publicly observable. Then, in each period $t \in \mathbb{N}$ the consumer chooses $a_t$, and the platform learns about her type based on a signal $s_t$. In this game, the platform moves only before $t = 1$. The other is the game of one-period (or short-run) commitment, in which the platform and the consumer move sequentially in every period: At the beginning of each period $t$, the platform sets $\gamma_t$. After observing $\gamma_t$, the consumer chooses $a_t$. Then, the platform observes the signal, and the game proceeds to period $t + 1$. In this case, the platform can commit to a privacy level only for one period. Note that in either game the consumer has no commitment power regarding future activity levels. The solution concept is subgame perfect equilibrium (SPE).\(^12\)

\(^8\)The equivalent formulation is that the platform observes $(a_t, s_t)$, chooses $b_t \in \mathbb{R}$, and obtains an ex post payoff of $- (X - b_t)^2$, which the platform does not observe. Writing the payoffs in terms of $\sigma_t^2$ simplifies exposition. See Acemoglu et al. (2019) for further discussion.

\(^9\)Throughout the paper, “increasing” means “non-decreasing.” Similar conventions apply to “decreasing,” “higher,” “lower,” and so on.

\(^10\)As a result, we can more generally assume that the variance of noise $\varepsilon_t$ is $\frac{1}{g(a_{t+1})} + \gamma_t$ for any strictly $g(\cdot)$ such that $g(0) = 0$; we can always redefine $g(a)$ as an activity level.

\(^11\)While I do not explicitly model the consumer’s participation decision, we may interpret $a_t = 0$ for all $t$ as non-participation.

\(^12\)The payoffs $u(a_t) - v \cdot [\sigma_0^2 - \sigma_t^2(a_t, \gamma_t)]$ and $\sigma_0^2 - \sigma_t^2(a_t, \gamma_t)$ incorporate the belief updating of the consumer.
3.1 Discussion of Assumptions

Signal structure. The model adopts the Gaussian signal structure and assumes that each player’s payoff depends only on the residual variance $\sigma^2_t$. The assumption enables us to model the decreasing marginal privacy cost cleanly, because we can capture the level of privacy or the amount of data as a scaler. The assumption also renders the model tractable. For example, we can treat the game as that of perfect information, because $\sigma^2_t$ deterministically evolves as a function of past $(a_t, \gamma_t)$. In practice, the formulation is relevant, for example, when consumers intrinsically want the platform to know less about their characteristics. In contrast, the model does not capture consumers who care about the first-order moment of the platform’s belief, e.g., consumers who want a lending platform to believe that their expected quality as a borrower is high. Finally, Section 6.3 maintains the Gaussian assumption and shows that all the results continue to hold if the variance of a noise $\epsilon_t$ is $\sigma^2_\epsilon(a_t, \gamma_t)$ that is increasing in $\gamma_t$ and satisfies $\partial^2 \sigma^2_\epsilon / \partial a \partial \gamma \geq 0$, i.e., a higher privacy protection does not make the variance of the noise strictly more responsive to activity.

Privacy cost function. The privacy cost $v(\sigma^2_0 - \sigma^2_t)$ captures the monetary or nonmonetary reasons why a consumer wants a platform to have less information—e.g., consumers may intrinsically value their privacy, or consider the risk of data breach and discrimination by third parties (Kummer and Schulte, 2019; Lin, 2019; Tang, 2019). Although I do not focus on a particular reason why the loss of privacy harms the consumer, Appendix A microfounds this privacy cost function in the context of third-degree price discrimination with linear demand. In practice, the consumer may prefer a certain level of data collection, which Section 4.1 takes into account.

The privacy cost is sunk. The consumer cannot delete past data. Thus she perceives the privacy cost from past data collection as sunk: Even if $a_t = 0$ for all $t \geq T$, the consumer incurs a privacy cost of $-v(\sigma^2_0 - \sigma^2_T)$ in any $t \geq T$. The assumption reflects the difficulty of deleting data, which is referred to as “data persistence” (Tucker, 2018). For instance, suppose a platform collects personal information and shares it with third parties. The consumer may then face a risk of discrimination or malicious targeting even outside of the platform. In another example, if a consumer inadvertently discloses information to other users, she may incur a psychological cost because other users know the information. Such a cost may persist even when the consumer is not active on the platform.

and the platform.
Because the consumer regards the privacy cost as sunk, she chooses activity levels based on the marginal privacy cost rather than the total privacy cost. Appendix 6.2 relaxes this assumption and studies extensions in which the consumer’s type varies over time.

Single consumer. I consider a single consumer to emphasize that the results do not rely on interactions between multiple consumers. However, since the consumer’s type is Gaussian, one could incorporate multiple consumers with “data externalities,” by assuming that consumers’ types are correlated (Acemoglu et al., 2019; Bergemann et al., 2019).

4 Equilibrium Under Long-Run Commitment

To examine how the platform designs its privacy policy, I begin by studying the game of long-run commitment. I first present a result under a stationary privacy policy, then study the equilibrium of the entire game. Given the platform’s information in the previous period and \((a_t, \gamma_t)\), the posterior variance evolves as follows.\(^{13}\)

\[
\sigma_t^2(a_t, \gamma_t) = \frac{1}{\sigma_{t-1}^2(a_{t-1}, \gamma_{t-1}) + \frac{1}{a_t + \gamma_t}}.
\]

Thus, the consumer’s privacy cost in period \(t\) is

\[
v \left[ \sigma_0^2 - \sigma_t^2(a_t, \gamma_t) \right] = v \left[ \sigma_0^2 - \frac{1}{\sigma_{t-1}^2(a_{t-1}, \gamma_{t-1}) + \frac{1}{a_t + \gamma_t}} \right].
\]

Define the privacy cost function as

\[
C(a, \gamma, \sigma^2) := v \left( \sigma_0^2 - \frac{1}{\sigma^2 + \frac{1}{a + \gamma}} \right).
\]

The following lemma shows properties of privacy cost \(C\) and marginal privacy cost \(\frac{\partial C}{\partial a}\).

Lemma 1 (Privacy Cost and Marginal Privacy Cost).

\(^{13}\)If \(x|\mu \sim N(\mu, \sigma^2)\) and \(\mu \sim N(\mu_0, \sigma_0^2)\), then \(\mu|x \sim N\left( \sigma_0^2 \frac{\sigma^2}{\sigma^2 + \sigma_0^2} x + \sigma^2 \frac{\sigma^2}{\sigma^2 + \sigma_0^2} \mu_0, \left( \frac{1}{\sigma_0^2} + \frac{1}{\sigma^2} \right)^{-1} \right)\).
1. $C(a, \gamma, \sigma^2)$ is decreasing in $\gamma$ and $\sigma^2$, and increasing in $a$.

2. $\frac{\partial C}{\partial a}(a, \gamma, \sigma^2)$ is decreasing in $\gamma$ and increasing in $\sigma^2$.

Lemma 1 implies that if the consumer has less privacy (i.e., $\sigma_t^2$ is small), she faces a high privacy cost $C$ but a low marginal privacy cost $\frac{\partial C}{\partial a}$. Intuitively, once a platform has collected a lot of information, the marginal privacy cost is low, because the consumer’s activity today does not much affect the platform’s learning. As a result, data collection harms the consumer, but incentivizes her to increase an activity level in the future. Also, even though the marginal effect of activity $a$ on the signal variance $\frac{1}{a} + \gamma$ is independent of the level of privacy protection $\gamma$, the marginal privacy cost is decreasing in $\gamma$. Thus, the platform can encourage the consumer’s activity by committing to add a noise to the signal.

We now derive the consumer’s problem. We can rewrite the evolution of posterior variances (1) as that of posterior precisions:

$$\frac{1}{\sigma_t^2(a_t, \gamma_t)} = \frac{1}{\sigma_{t-1}^2(a_{t-1}, \gamma_{t-1})} + \frac{1}{\frac{1}{a_t} + \gamma_t} = \cdots = \frac{1}{\sigma_0^2} + \sum_{s=1}^{t} \frac{1}{\frac{1}{a_s} + \gamma_s}. \quad (2)$$

Once the platform chooses a privacy policy, the consumer faces a single-agent optimization problem. As a result, we can write her problem as if she chooses an infinite path of activity levels to maximize her ex ante payoff. Formally if the platform commits to a privacy policy $(\gamma_t)_{t \in \mathbb{N}}$ the consumer solves the following problem:

$$\max_{(a_t)_{t \in \mathbb{N}}} \sum_{t=1}^{\infty} \delta_{t-1} \left[ u(a_t) - \nu \left( \frac{1}{\sigma_0^2} + \frac{1}{\frac{1}{a_s} + \gamma_s} \right) \right]. \quad (3)$$

The next result presents the consumer’s response to a stationary privacy policy. Although the platform’s equilibrium policy may not be stationary, this non-equilibrium analysis clarifies the intuition behind the consumer’s dynamic incentive.\textsuperscript{14} (see Appendix D for the proof).

\textsuperscript{14}We may also view the consumer’s behavior under a stationary policy as the long-run outcome of the model in which the platform sets a single privacy level to consumers who join the platform in different periods. To see this, suppose that a unit mass of consumers join the platform in each period, and each consumer stops using the platform in any period with probability $1 - \delta$. As $t \to \infty$ the mass of consumers who joined the platform $k$ periods ago converges to $\delta^k$, and every consumer is solving (3) with $\delta_C = \delta$ and $\gamma_t = \gamma$ for all $t$. 

9
Proposition 1. Suppose the platform commits to a stationary privacy policy, i.e., $\gamma_t = \gamma$ for all $t \in \mathbb{N}$. Let $(a^*_t)_{t \in \mathbb{N}}$ denote the equilibrium activity levels of this subgame. There is a cutoff value $v^*(\gamma) \in \mathbb{R}_+$ with the following properties.

1. If $v < v^*(\gamma)$, then $a^*_t$ increases in $t$, $\lim_{t \to \infty} a^*_t = a_{max}$, and $\lim_{t \to \infty} \sigma^2_t = 0$. The consumer’s continuation value decreases over time.

2. If $v > v^*(\gamma)$, then $a^*_t = 0$ and $\sigma^2_t = \sigma^2_0$ for all $t \in \mathbb{N}$.

3. The cutoff $v^*(\gamma)$ is increasing in $\gamma$, and $\lim_{\gamma \to \infty} v^*(\gamma) = \infty$.

The intuition is as follows. If the value of privacy is low, the consumer prefers a positive activity level $a^*_1 > 0$ in $t = 1$. The consumer activity generates information, which reduces her payoff and marginal cost of using the platform. As a result, she chooses $a^*_2 \geq a^*_1$ in $t = 2$. Repeating this argument, we can conclude that $a^*_t$ increases over time. The platform can then observe the signals to perfectly learn the consumer’s type as $t \to \infty$. Perfect learning in $t \to \infty$ implies that the marginal privacy cost goes to zero, and thus $a^*_t \to a_{max}$ (Point 1). In contrast, the consumer with a high $v$ does not use the platform (Point 2). Finally, $v^*(\gamma)$ is increasing in $\gamma$ because a higher privacy level reduces the cost of using the platform (Point 3).

Under a stationary policy, the consumer’s continuation value decreases over time. In contrast, the flow payoff may be non-monotone: Evaluated at the same activity level (i.e., $a_{t-1} = a_t$), the consumer incurs a higher privacy cost and thus earns a lower flow payoff in period $t$ than $t - 1$. However, the optimal $a_t$ is (weakly) higher than $a_{t-1}$, and the consumer may increase $a_t$ so much that she enjoys a higher flow payoff than in the previous period at the expense of a low continuation value. Online Appendix L provides a numerical example.

If we interpret $\gamma$ as a privacy regulation, Proposition 1 implies that the stricter regulation (i.e., a higher $\gamma$) increases the cutoff from $v^*(\gamma)$ and expands the range of $v$’s under which the consumer loses privacy. Thus a privacy regulation can increase the platform’s information by making consumers comfortable to use the platform more. A higher $\gamma$ also increases the consumer’s ex ante discounted payoffs. However, if the regulator is more patient than the consumer, the regulator may view the increased information under the strict regulation as undesirable. For example, suppose that without regulation, the consumer chooses $a^*_t = 0$ and obtains zero payoffs in all periods. If
the regulator enforces a large $\gamma$ such that $v^*(\gamma) > v$, the consumer uses the platform and faces the long-run flow payoff of $u(a_{\text{max}}) - v\sigma_0^2$. If $u(a_{\text{max}}) - v\sigma_0^2 < 0$ and the regulator, who is more patient than the consumer, mainly cares about the long-run consumer welfare, then it may consider the outcome under the strict regulation as undesirable.

We now turn to the equilibrium dynamics of the entire game, in which the platform can commit to any (potentially nonstationary) privacy policy. In equilibrium, the platform anticipates that the consumer solves (3) given any privacy policy. The following lemma presents a property of the consumer’s optimal behavior that shapes the platform’s choice.

**Lemma 2.** Let $(\bar{a}_t(\gamma))_{t \in \mathbb{N}}$ and $(\bar{a}_t(\gamma'))_{t \in \mathbb{N}}$ denote the optimal activity levels (i.e., the solution of (3)) under privacy policies $\gamma = (\gamma_t)_{t \in \mathbb{N}}$ and $\gamma' = (\gamma'_t)_{t \in \mathbb{N}}$, respectively. Let $T = \{ t \in \mathbb{N} : \gamma_t \neq \gamma'_t \}$ denote the set of periods in which the two privacy policies differ. Suppose $\frac{1}{\bar{a}_t(\gamma)} + \gamma_t \leq \frac{1}{\bar{a}_t(\gamma')} + \gamma'_t$ for all $t \in T$. Then, $\bar{a}_t(\gamma) \geq \bar{a}_t(\gamma')$ for all $t \in \mathbb{N} \setminus T$.

The lemma means that data collection in different periods are complements. For example, suppose that the platform changes privacy level in period $t$ from $\gamma$ to $\gamma'$. The platform makes such a change at the ex ante stage, so the consumer will also adjust her activity levels over time. In particular, suppose her activity level in period $t$ changes from $a$ to $a'$. The lemma implies that if the new policy leads to better information in period $t$, i.e., $\frac{1}{a'} + \gamma' < \frac{1}{a} + \gamma$, then the consumer also chooses higher activity levels and the platform collects more information in any other period $s \neq t$, in which the privacy levels remain the same. The intuition comes from the decreasing marginal privacy cost: If the consumer anticipates more data collection in some periods, it reduces the cost of giving up her privacy in other periods.

**Proposition 1** and **Lemma 2** only partially describe the consumer’s behavior and do not characterize how the consumer reacts to the general change of a privacy policy. However, we can use them to characterize the unique long-run outcome across all equilibria. The result also presents the equilibrium dynamics when the consumer has a binary choice. (see Appendix E for the proof; Appendix C proves the existence of an equilibrium).

**Theorem 1.** In any equilibrium under the long-run commitment, the following holds.

1. The consumer eventually loses her privacy and chooses the highest activity level: $\lim_{t \to \infty} \sigma_t^2 = 0$ and $\lim_{t \to \infty} a_t^* = a_{\text{max}}$. 

11
2. For any $T \in \mathbb{N}$, there is a $v \in \mathbb{R}$ such that for any $v \geq v$, we have $\gamma_t^* > 0$ for all $t \leq T$.

3. Suppose $A = \{0, a_{max}\}$. Then $a_t^* = a_{max}$ for all $t$; $\gamma_t^*$ decreases over time and hits zero in finite periods; and the consumer’s flow payoff and continuation payoff decrease over time.

Point 1 says that a farsighted consumer eventually gives up all of her privacy, even when she anticipates future choices made by the platform. The privacy loss occurs for any discount factors, so a myopic platform that faces a patient consumer induces the long-run privacy loss. Similarly, the long-run outcome is independent of $v$ or the shape of the gross utility function, $u(\cdot)$. Point 2 implies that if the consumer highly values her privacy, the platform commits to high privacy protection in early periods to induce the long-run privacy loss.

We may think that the result follows from the statistical argument—that the platform observes a signal in each period, so it will learn the true type as $t \to \infty$. The intuition is misleading for two reasons. First, the consumer can choose $a_t = 0$ to generate no information and we do not impose any Inada-type condition on $u(\cdot)$ under which the consumer always prefers a positive $a_t$. Second, the platform’s objective is not the long-run payoff but the discounted payoffs. Depending on how data collection in one period affects that in other period, it might strategically commit to not collect full information.\(^{15}\) The result stems from a combination of the decreasing marginal privacy cost and the platform’s ability to offer privacy that derives the result.

The intuition for Point 1 is as follows. Suppose that the platform commits to collect no information after period $t$, that is, it adopts $(\gamma_t)_{t \in \mathbb{N}}$ such that $\gamma_t = \infty$ for any $t \geq \tau$. We show that the platform can modify the policy to increase the precision of signals in all periods. First, Proposition 1 says that there is a stationary policy $\gamma_t = \gamma^* < \infty$ under which the consumer chooses increasing activity levels. Given such a $\gamma^*$, suppose the platform replaces $\gamma_t = \infty$ with $\gamma_t = \gamma^*$ for all $t \geq \tau$. After the change, the consumer’s problem from period $t$ is as if she faces a lower initial variance (i.e., $\sigma_t^2$ instead of $\sigma_0^2$) and faces a stationary policy of $\gamma^*$. Because $\gamma^*$ induces the consumer to choose positive activity levels when she has not yet lost her privacy, the consumer chooses even higher activity levels when she faces $\gamma^*$ from period $\tau$ onward. As a result the change of the policy increases the precision of signals after period $\tau$. Second, the consumer also adjusts activity levels

\(^{15}\)To see this, consider a hypothetical situation in which the consumer’s activity level in the first period is decreasing in the precision of the signal generated in the future period. A myopic platform would then commit to $\gamma_t = \infty$ for all $t \geq 2$. The proposition states that in our model, the myopic platform still collects full information in the long run.
before period \( \tau \), but \textbf{Lemma 2} implies that the consumer will increase activity levels in any period \( s < \tau \). Thus, stopping data collection is inconsistent with the platform’s optimization regardless of the parameters. In the proof, I show that a similar argument applies to any policy such that \( \sigma_t^2 \) does not converge to 0.

The intuition for \textbf{Point 2} is that in early periods, the platform knows little about the consumer, so the consumer’s activity has a large impact on what the platform can learn about her type. Thus the consumer faces a high marginal privacy cost, which discourages her from raising the activity level. The platform then commits to a high level of privacy protection to encourage consumer activity. As a result, in early periods the platform slowly learns her type.

\textbf{Point 3} shows the monotonicity of equilibrium objects when the consumer has a binary choice. In particular, the platform commits to offer declining privacy protection \( \gamma_t \), because the consumer who has less privacy chooses the positive activity level even at a low \( \gamma_t \). In contrast, for a general \( A \), \( a_t^* \) and \( \gamma_t^* \) may be non-monotone. The activity level may decrease from period \( t - 1 \) to \( t \), when the platform decreases \( \gamma_t^* \) to increase the signal quality at the expense of the activity level. The platform may increase \( \gamma_t^* \) if a lower \( \sigma_t^2 \) makes it easier for the platform to induce a high \( a_t \). Though privacy protection (\textit{Online Appendix L} provides numerical examples of such non-monotonicity).

\textbf{Remark 1}. In the game of long-run commitment, the platform can only commit to a deterministic sequence of privacy levels. A natural question is whether the platform benefits from stronger commitment power—i.e., it can commit to an action-dependent policy that maps past actions \((a_1, \ldots, a_{t-1})\) to the privacy level \( \gamma_t \) in any period \( t \geq 2 \). While characterizing the optimal policy under full commitment is out of the scope of the paper, the \textit{Online Appendix O} provides a sufficient condition under which the platform earns a greater payoff from an action-dependent policy than under long-run commitment. Intuitively, the platform with the stronger commitment power may induce consumers to choose high activity levels by threatening them to set \( \gamma_t = 0 \) in future periods unless they choose a high activity level today. At the same time \textit{Section 5} shows that if the consumer has a binary activity level and the players have the same discount factor, the platform’s payoff with the best action-dependent policy is equal to the one with the short-run commitment power.
4.1 The Long-Run Privacy Loss Under a General Payoff Specification

A natural question is to what extent Theorem 1 depends on assumptions on preferences. In particular, I have assumed that the consumer dislikes data collection and the platform cares only about information. I now relax the restriction on preferences. The platform’s per-period payoff is \( \Pi(a_t, \sigma_t^2) \), which is strictly increasing in \( a_t \) and decreasing in \( \sigma_t^2 \). For example, an advertising platform benefits from a high activity \( a_t \) and more data (i.e., low \( \sigma_t^2 \)) because the consumer will then see many highly targeted ads. We impose no restrictions on the relative importance of activity and data for \( \Pi(\cdot, \cdot) \).

The consumer’s per-period payoff is now \( \hat{u}(a_t, \sigma_t^2) \) that satisfies the following conditions: There is some \( \varepsilon > 0 \) such that for each \( \sigma^2 \in [0, \sigma_0^2] \) and \( a, a' \in A \) with \( a > a' \), \( \hat{u}(a, \sigma^2) - \hat{u}(a', \sigma^2) > \beta \); for each \( a \in A \), \( \hat{u}(a, \sigma^2) \) is differentiable in \( \sigma^2 \); and \( \max_{a \in A, \sigma^2 \in [0, \sigma_0^2]} \big| \frac{\partial \hat{u}}{\partial \sigma^2}(a, \sigma^2) \big| < \infty \). The last inequality means that the marginal cost of losing privacy is uniformly bounded. For example, we can allow \( \hat{u}(a, \sigma^2) = u(a) - C(\sigma^2) \) for any \( C(\cdot) \) with bounded derivatives. The term \( C(\cdot) \) can be first decreasing and then increasing, i.e., the consumer prefers some level of data collection. The original setting is \( \hat{u}(a, \sigma^2) = u(a) - v(\sigma_0^2 - \sigma^2) \). Other parts of the game remain the same. The following result extends Theorem 1:

**Proposition 2.** In the above setting, the following holds:

1. There is a privacy policy \( (\gamma_t)_{t \in \mathbb{N}} \) that has the following property: In any equilibrium of the subgame in which the platform has committed to \( (\gamma_t)_{t \in \mathbb{N}} \), the consumer loses her privacy and chooses the highest activity level in the long run: \( \lim_{t \to \infty} \sigma_t^2 = 0 \) and \( \lim_{t \to \infty} a_t^* = a_{max} \).

2. Fix the consumer’s discount factor. Given the platform’s discount factor \( \delta_P \), let \( \sigma_\infty^2(\delta_P) := \lim_{t \to \infty} \sigma_t^2(\delta_P) \) denote the long-run posterior variance in an arbitrarily chosen equilibrium. Then, \( \lim_{\delta_P \to 1} \sigma_\infty^2(\delta_P) = 0 \).

Point 1 states that the platform can induce privacy loss and a high activity level for a broad class of consumer preferences. Whenever the consumer incurs bounded marginal costs \( \frac{\partial \hat{u}}{\partial \sigma^2} \), the marginal cost with respect to an activity level goes to zero as \( \sigma_t^2 \to 0 \). Thus the platform can induce the highest activity level and full information collection in the long run.\(^{16}\)

\(^{16}\)Although in a different context, the intuition is similar to the idea that if a firm uses data for forecasts and the gain to a perfect forecast is finite, the returns to data must diminish at some point (Farboodi and Veldkamp, 2020).
Point 1 alone does not imply that the platform collects all the information in equilibrium. However, Point 2 states that a sufficiently patient platform does so. The consumer chooses the highest activity level when she has no privacy, and such an outcome maximizes the long-run profit of the platform. Thus for $\delta_P$ close to 1, even if a platform cares about user activity, it may eventually collect as much information as exclusively data-driven firms in the long run. Note also that the result only concerns the long-run outcome induced by a patient platform. Thus for a general $\delta_P$, the platform may still induce a higher $\sigma_t^2$ and impose a lower privacy cost when it cares more about consumer activity.

4.2 Implications of Theorem 1 and Proposition 2

First, Theorem 1 potentially explains the privacy paradox: Consumers seem to casually share their data with online platforms, despite their concerns about data collection.\textsuperscript{17} We may view this puzzle as the long-run equilibrium outcome of this model, in which the consumer faces a high privacy cost and negligible marginal cost. The result also shows that the platform benefits such an outcome in two ways: Such an outcome can arise even if firms adopt business models that do not much rely on data (Proposition 2), or the platform mainly cares about short-run profits. The result also points to the difficulty of applying the revealed preference argument to static privacy choices, because the consumer’s decision may depend on the stock of information they have already revealed.

Second, the result connects consumer privacy problem with rational addiction (Becker and Murphy, 1988). The connection stems from that a high activity level today decreases the consumer’s future utility, but increases her future marginal utility of using the platform. In contrast to models of rational addiction, the current model has a platform that can choose its privacy policy to influence the degree of addiction.\textsuperscript{18} As a result, even if consumers are patient and highly value their privacy, they become “addicted” to the platform.

Finally, at an anecdotal level, the equilibrium strategy of the platform, which offers high privacy

\textsuperscript{17}Acquisti et al. (2016) conduct an insightful review of research on the economics of privacy, including the privacy paradox. Recent empirical work includes, for example, Athey et al. (2017).

\textsuperscript{18}Relatedly, Boone and Shapiro (2006), Zhang (2012), and Meng (2018) study dynamic contracts for addictive goods. A general framework in Pavan et al. (2014) could also apply to the design of a mechanism that provides addictive goods. In these papers, the principal uses monetary transfer and allocation rules to maximize profit, which differs from my model in which the platform can directly affect the degree of addition through a privacy policy. Methodologically, these papers use the first-order conditions to characterize the agent’s incentive; in my model, we cannot use the first-order conditions because the consumer faces a concave cost function.
levels for early periods but not necessarily for later periods, seems consistent with how data policies of online platforms have evolved. In 2004, Facebook’s privacy policy stated that it would not use (first-party) cookies to collect consumer information. In 2020, the privacy policy states that it uses cookies to track consumers on and possibly off the website.\textsuperscript{19} Srinivasan (2019) describes how Facebook’s policy has changed from the one that preserves consumer privacy to “broad-scale commercial surveillance.” Also, Fainmesser et al. (2019) describe how online platforms’ business models have changed from the initial phase, in which they expand a user base, to the mature phase, in which they monetize the information collected. The equilibrium dynamics in Theorem 1 rationalize the pattern described.\textsuperscript{20}

5 One-Period Commitment

I now consider one-period commitment to study how the lack of commitment affects the platform’s ability to collect data. One-period commitment could be realistic, for example, if a platform may be sanctioned for the outright violation of its privacy policy, but it may still revise its policy over time. Below, I first show that the equilibrium is unique if the prior uncertainty of the consumer’s type (i.e., $\sigma^2_0$) is small. I then consider a general $\sigma^2_0$.

5.1 Unique Equilibrium Under a Small $\sigma^2_0$

Despite the dynamic nature of the game, the equilibrium is unique if the initial uncertainty about the consumer’ type is small.

Proposition 3. There is a $B > 0$ such that if $\sigma^2_0 \leq B$, then any equilibrium involves $(\gamma_t, a_t) = (0, a_{\text{max}})$ for all $t \in \mathbb{N}$, and $\lim_{t \to \infty} \sigma^2_t = 0$.

Intuitively, if $\sigma^2_0$ is small, the marginal privacy cost is so small that the consumer prefers $a_{\text{max}}$ regardless of the current and future privacy protection. Thus, the long-run privacy could arise in equilibrium only if the platform has not yet learned much about the consumer.

\textsuperscript{19}In 2020, Facebook’s privacy policy states that “we use cookies if you have a Facebook account, use the Facebook Products, including our website and apps, or visit other websites and apps that use the Facebook Products (including the Like button or other Facebook Technologies).” \url{https://www.facebook.com/policies/cookies}

\textsuperscript{20}In addition, the platform may have an even stronger incentive to lower privacy protection, if the expansion of user base strengthens a positive network externality and incentivizes users to choose higher activity levels.
5.2 Binary Activity Level

I now consider a general $\sigma^2_0$. To facilitate the analysis, I impose the following assumption and definitions.

**Assumption 1.** The consumer has a binary activity level: $A = \{0, a_{max}\}$.

**Definition 1.** An equilibrium is *platform-best* if it maximizes the platform’s ex ante sum of discounted payoffs across all subgame perfect equilibria. We analogously define “*platform-worst,*” “*consumer-best,*” and “*consumer-worst.*”

**Definition 2.** A *Markov perfect equilibrium (MPE)* is an equilibrium in which after any history, the platform’s choice $\gamma_t$ depends only on $\sigma^2_{t-1}$, and the consumer’s choice $a_t$ depends only on $(\sigma^2_{t-1}, \gamma_t)$.

The following result presents a consumer-worst equilibrium, which is also platform-best under a common discount factor. Recall that $\delta_C$ and $\delta_P$ denote the discount factors of the consumer and the platform, respectively (see Appendix I for the proof).

**Theorem 2.** Under Assumption 1, there is a consumer-worst Markov perfect equilibrium. This equilibrium is independent of $\delta_P$, and has the following properties:

1. The privacy level $\gamma^*_t$ is decreasing in $t$ and hits zero in a finite time. Also, the consumer loses her privacy in the long run: $\lim_{t \to \infty} \sigma^2_t \to 0$.

2. The platform’s strategy is greedy: Given the consumer’s strategy, after any history, the platform sets a privacy level $\gamma_t$ that maximizes the precision of the signal in period $t$.

Points 1 extends the intuition in Theorem 1: The platform initially chooses high privacy levels to incentivize the consumer to generate information. As the platform collects more information, her incentive to protect privacy declines; correspondingly, the platform sets a decreasing privacy level, which hits zero in a finite period. Lemma 1 alone does not imply that the consumer faces a lower cost of choosing $a_{max}$ when she has less privacy, because her continuation value is endogenous. However, in this equilibrium, the consumer’s continuation value $V(1/\sigma^2_t)$, as a function
of the amount of information collected, is decreasing and convex in $1/\sigma_t^2$. As a result, the consumer’s Markov decision problem exhibits a declining marginal loss of generating information. The decreasing marginal cost also implies that the consumer’s future activity level is increasing in the precision of the signal generated today. Thus it is optimal for the platform to myopically set a privacy level (Point 2).\footnote{Thus we obtain the same consumer-worst equilibrium as long as the platform prefers to have more information—e.g., the platform’s objective could be any function of $(\sigma_t^2)_{t \in \mathbb{N}}$ for each $t \in \mathbb{N}$.}

The optimality of greedy policy indicates that the platform may not benefit from a stronger commitment power. The following result confirms this intuition (see Appendix J for the proof).

**Corollary 1.** Let $\gamma^*_t$ denote the privacy level in the consumer-worst equilibrium. If $\delta_C = \delta_P$, the optimal policy under long-run commitment is $(\gamma^*_t)_{t \in \mathbb{N}}$. Moreover, the platform’s payoff in the consumer-worst equilibrium is equal to the one when the platform has full commitment power—i.e., it can pre-commit to a strategy that determines privacy level $\gamma_t$ in every period $t \geq 2$ as a function of past activity levels $(a_1, \ldots, a_{t-1})$.

Theorem 2 indicates that the lack of long-run commitment may not prevent the platform from collecting consumer data. At the same time, the result does not imply the uniqueness of the equilibrium when $\sigma_0^2$ is not small. Indeed, the platform with only one-period commitment power may fail to collect any information (see Appendix K for the proof).

**Theorem 3.** Suppose Assumption 1 and $\delta_C \geq \frac{1}{2}$ hold. There is a ($v$-dependent) $\sigma^2 < \infty$ such that if $\sigma_0^2 \geq \sigma^2$, there is a consumer-best and platform-worst Markov perfect equilibrium, in which the platform sets $\gamma_t = \infty$ and the consumer chooses $a_t = a_{\text{max}}$ in all periods.

In this equilibrium, the platform offers full privacy, because whenever it attempts to collect information by setting $\gamma_t < \infty$, the consumer chooses $a_t = 0$. The consumer prefers $a = 0$ following the platform’s deviation, because the initial privacy loss, no matter how small, will lead to the complete privacy loss and impose her a high cost in the future. Indeed, after any off-path event in which the platform collects some information (i.e., $\sigma_t^2 < \sigma_0^2$), the consumer-worst equilibrium in Theorem 2 is played. A grim trigger strategy—i.e., the platform’s deviation induces $a_t = 0$ forever—does not work, because the platform can set a large finite $\gamma_t$ to render such a punishment suboptimal for the consumer. We may view Theorem 3 as the platform’s Coasian.
commitment problem: The platform in period $t$ competes with its future self, which offers the best privacy protection in any period $s \geq t + 1$. The result counters the idea that the platform’s weak commitment power causes insufficient privacy protection.

**Remark 2 (Welfare Implications).** Under a common discount factor $\delta$, the total surplus is

$$\sum_{t=1}^{\infty} \delta^{t-1} [u(a_t) + (1 - v)(\sigma_0^2 - \sigma_t^2)].$$

If $v > 1$, the efficient outcome is $(\gamma_t, a_t) = (\infty, a_{\text{max}})$ for all $t \in \mathbb{N}$. Thus, the consumer-best equilibrium in Theorem 3 is efficient. If $v < 1$, the efficient outcome is $(\gamma_t, a_t) = (0, a_{\text{max}})$ for all $t \in \mathbb{N}$. This outcome may not arise in any equilibrium, because it may give the consumer a negative payoff. However, the inefficiency will disappear in the platform-best equilibrium, in that $(\gamma_t, a_t) = (0, a_{\text{max}})$ is played after some finite period. Finally, if the platform has long-run commitment power, it implements the platform-best outcome in any equilibrium. In this case, if $v > 1$, any equilibrium leads to an inefficiently high level of data collection.

### 6 Extensions

#### 6.1 Speed of Learning

So far we have fixed the parameters and examined the dynamics of data collection. We now examine how various parameters affect the speed of data collection.

**Proposition 4.** Fix any privacy policy. In any period, the consumer chooses a lower activity level if her discount factor $\delta_C$ is higher, the value $v$ of privacy is higher, or the prior variance $\sigma_0^2$ of her type is small.

**Proof.** First we consider the impact of the discount factor. Fix any privacy policy of the platform and all parameters except the consumer’s discount factor. Take two discount factors of the consumer, $\delta_V$ and $\delta_W > \delta_V$. As in the proof of Lemma 8, we begin with the “$T$-period problem,” in which the consumer’s payoff in any period $s \geq T + 1$ is exogenously set to zero. For any $t \leq T$, let $V^T_t(\rho)$ denote the consumer’s continuation value in the $T$-period problem starting from period
The induction hypothesis states

\[
V_t^T(\rho) = \max_{(a_t, \ldots, a_T) \in A^{T-t+1}} \sum_{s=t}^{T} \delta_{V_s} \left( u(a_s) - v \left( \sigma_0^2 - \frac{1}{\rho} + \frac{1}{\frac{1}{a_s} + \gamma_t} \right) \right).
\]

Here, \( \rho_{t-1} = \rho \), and \( (\rho_t, \ldots, \rho_{T-1}) \) are recursively defined by Bayes’ rule given \( (a_t, \ldots, a_{T-1}) \).

The standard argument of dynamic programming implies that for each \( t = 1, \ldots, T \),

\[
V_t^T(\rho) = \max_{a \in A} u(a) - v \cdot \left( \sigma_0^2 - \frac{1}{\rho} + \frac{1}{\frac{1}{a} + \gamma_t} \right) + \delta_V V_{t+1}^T \left( \rho + \frac{1}{a} + \gamma_t \right),
\]

where \( V_{T+1}^T(\cdot) \equiv 0 \). Similarly if the consumer has discount factor \( \delta_W \), the relevant value function \( W_t^T \) satisfies

\[
W_t^T(\rho) = \max_{a \in A} u(a) - v \cdot \left( \sigma_0^2 - \frac{1}{\rho} + \frac{1}{\frac{1}{a} + \gamma_t} \right) + \delta_W W_{t+1}^T \left( \rho + \frac{1}{a} + \gamma_t \right),
\]

where \( W_{T+1}^T(\cdot) \equiv 0 \). Both \( W_t^T \) and \( V_t^T \) are decreasing and convex. We show that for any \( x, y \geq 0 \) such that \( y > x \), \( W_k^T(y) - W_k^T(x) \leq V_k^T(y) - V_k^T(x) \) for all \( k = 1, \ldots, T + 1 \). The inequality holds with equality for \( k = T + 1 \). Suppose it holds for \( k = t + 1 \). Let \( a_t^V(\rho) \) and \( a_t^W(\rho) \) denote the maximizers for (4) and (5), respectively. The envelope theorem implies

\[
V_t^T(y) - V_t^T(x) = -\int_x^y \frac{v}{\left( \rho + \frac{1}{a_t^V(\rho)} + \gamma \right)^2} + \delta_V \frac{dV_{t+1}^T}{d\rho} \left( \rho + \frac{1}{a_t^V(\rho)} + \gamma \right) d\rho,
\]

and

\[
W_t^T(y) - W_t^T(x) = -\int_x^y \frac{v}{\left( \rho + \frac{1}{a_t^W(\rho)} + \gamma \right)^2} + \delta_W \frac{dW_{t+1}^T}{d\rho} \left( \rho + \frac{1}{a_t^W(\rho)} + \gamma \right) d\rho.
\]

The induction hypothesis states \( W_{T+1}^T \) decreases more rapidly than \( V_{T+1}^T \), which implies \( a_t^W(\rho) \leq a_t^V(\rho) \). Thus we have \( V_t^T(y) - V_t^T(x) \geq W_t^T(y) - W_t^T(x) \). By induction, we have \( V_1^T(y) - V_1^T(x) \geq W_1^T(y) - W_1^T(x) \). Taking \( T \to \infty \), we have \( V_1(y) - V_1(x) \geq W_1(y) - W_1(x) \). We can apply the same argument to the consumer’s problem that starts from period \( t \) and conclude that
\( V_t(y) - V_t(x) \geq W_t(y) - W_t(x) \) for any \( t \geq 1 \).

In \( t = 1 \), the consumer's problems under \( \delta_V \) and \( \delta_W \) are respectively

\[
\max_{a \in A} u(a) - v \cdot \left( \sigma_0^2 - \frac{1}{\rho_0 + \frac{1}{a + \gamma_1}} \right) + \delta_W W_2 \left( \rho_0 + \frac{1}{a + \gamma_1} \right)
\]

and

\[
\max_{a \in A} u(a) - v \cdot \left( \sigma_0^2 - \frac{1}{\rho_0 + \frac{1}{a + \gamma_1}} \right) + \delta_V V_2 \left( \rho_0 + \frac{1}{a + \gamma_1} \right).
\]

Because \( V_2(\cdot) \) decreases more rapidly than \( W_2(\cdot) \), we have \( a^V_1(\rho) \geq a^W_1(\rho) \) and \( \rho^V_1 \geq \rho^W_1 \). Suppose inequalities \( a^V_k(\rho) \geq a^W_k(\rho) \) and \( \rho^V_k \geq \rho^W_k \) hold up to period \( k = t - 1 \). In period \( t \), the consumer solves

\[
\max_{a \in A} u(a) - v \cdot \left( \sigma_0^2 - \frac{1}{\rho^W_t + \frac{1}{a + \gamma_1}} \right) + \delta_W W_{t+1} \left( \rho^W_{t+1} + \frac{1}{a + \gamma_t} \right)
\]

and

\[
\max_{a \in A} u(a) - v \cdot \left( \sigma_0^2 - \frac{1}{\rho^V_t + \frac{1}{a + \gamma_1}} \right) + \delta_V V_{t+1} \left( \rho^V_{t+1} + \frac{1}{a + \gamma_t} \right).
\]

Thus we have \( a^V_{t+1}(\rho) \geq a^W_{t+1}(\rho) \) and \( \rho^V_{t+1} \geq \rho^W_{t+1} \).

Applying the same argument as above, we can show that the consumer chooses a lower activity level if \( v \) is higher.

Finally, suppose the prior variance of the consumer’s type increases, or equivalently, \( \rho_0 \) decreases. We use \( V \) for the continuation value of the consumer. In \( t = 1 \), the consumer solves

\[
\max_{a \in A} u(a) + \frac{v}{\rho_0 + \frac{1}{a + \gamma_1}} + \delta V_2 \left( \rho_0 + \frac{1}{a + \gamma_1} \right).
\]

Because \( V \) is decreasing and convex, the consumer chooses a lower activity level when \( \rho_0 \) is small. Thus if \( \rho_0 \) is smaller, \( \rho_1 \) becomes smaller and the consumer chooses a lower activity level in \( t = 2 \). Repeating the same argument, we can show that the consumer chooses a lower activity level in every period when she starts from a greater \( \sigma_0^2 \).

\[\square\]

**Proposition 5.** Suppose Assumption 1 holds. In the consumer-worst equilibrium characterized in Theorem 2, the platform chooses a higher privacy level if the consumer’s discount factor \( \delta_C \) is higher, the value \( v \) of privacy is higher, or the prior variance \( \sigma_0^2 \) of her type is small.
Proof. Take two discount factors of the consumer, $\delta_V$ and $\delta_W > \delta_V$. Let $V$ and $W$ satisfy equation (47) in the proof of Theorem 2 given $\delta_V$ and $\delta_W$, respectively:

$$V(\rho) = \max_{a \in \{0, a_{\text{max}}\}} \left\{ u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + a} \right) + \delta_V V(\rho + a) \right\}, \quad (13)$$

$$W(\rho) = \max_{a \in \{0, a_{\text{max}}\}} \left\{ u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + a} \right) + \delta_W W(\rho + a) \right\}. \quad (14)$$

We show $\delta_W > \delta_V$ implies $W$ decreases more rapidly than $V$, i.e., $W(y) - W(x) \leq V(y) - V(x)$ for all $y > x \geq 0$. For $\delta \in \{\delta_W, \delta_V\}$, define an operator $\mathcal{F}_\delta$ as follows:

$$\mathcal{F}_\delta h(\rho) = \max_{a \in \{0, a_{\text{max}}\}} \left\{ u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + a} \right) + \delta h(\rho + a) \right\}. \quad (15)$$

The operator $\mathcal{F}_\delta$ maps any decreasing and convex $h$ to a function with the same property. We show that if $h$ decreases more rapidly than $g$, i.e., if $h(y) - g(y) \leq h(x) - g(x)$ for all $y > x \geq 0$, then $\mathcal{F}_{\delta_W} h$ decreases more rapidly than $\mathcal{F}_{\delta_V} g$. The envelope theorem implies

$$\mathcal{F}_{\delta_W} h(y) - \mathcal{F}_{\delta_W} h(x) = \int_x^y \frac{-v}{(\rho + a_{\delta_W}(\rho))^2} + \delta_W h'(\rho + a_{\delta_W}(\rho)) d\rho$$

$$\mathcal{F}_{\delta_V} g(y) - \mathcal{F}_{\delta_V} g(x) = \int_x^y \frac{-v}{(\rho + a_{\delta_V}(\rho))^2} + \delta_V h'(\rho + a_{\delta_V}(\rho)) d\rho,$$

where

$$a_{\delta_W}(\rho) \in \arg \max_{a \in \{0, a_{\text{max}}\}} \left\{ u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + a} \right) + \delta_W h(\rho + a) \right\} \quad (16)$$

$$a_{\delta_V}(\rho) \in \arg \max_{a \in \{0, a_{\text{max}}\}} \left\{ u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + a} \right) + \delta_V g(\rho + a) \right\}. \quad (17)$$

We have $a_{\delta_W}(\rho) \leq a_{\delta_V}(\rho)$ because $\delta_W h(\rho + a)$ decreases more rapidly than $\delta_V g(\rho + a)$. Thus we have $\mathcal{F}_{\delta_W} h(y) - \mathcal{F}_{\delta_W} h(x) \leq \mathcal{F}_{\delta_V} g(y) - \mathcal{F}_{\delta_V} g(x)$. For any $n \in \mathbb{N}$, we have $\mathcal{F}_{\delta_W}^n V(y) - \mathcal{F}_{\delta_W}^n V(x) \leq \mathcal{F}_{\delta_V}^n V(y) - \mathcal{F}_{\delta_V}^n V(x) = V(y) - V(x)$. Taking $n \to \infty$, we have $W(y) - W(x) \leq V(y) - V(x)$.

In the consumer-worst equilibrium, the platform sets the lowest privacy level that makes the
consumer willing to choose $a_{max}$ as opposed to 0. Given $\delta_W$, the platform sets

$$\gamma_W(\rho) = \min \left\{ u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + \frac{1}{a + \gamma}} \right) + \delta_W W \left( \rho + \frac{1}{a + \gamma} \right) \geq -v \left( \sigma_0^2 - \frac{1}{\rho} \right) + \delta_W W (\rho) \right\}$$

Given $\delta_V$, the platform sets

$$\gamma_V(\rho) = \min \left\{ u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + \frac{1}{a + \gamma}} \right) + \delta_V V \left( \rho + \frac{1}{a + \gamma} \right) \geq -v \left( \sigma_0^2 - \frac{1}{\rho} \right) + \delta_V V (\rho) \right\}$$

The consumer incurs a greater loss from a lower continuation value given $\delta_W$ than $\delta_V$, so we have $\gamma_W(\rho) \geq \gamma_V(\rho)$. We now show that the platform chooses a greater privacy level when the consumer is more patient. In period 1, the statement holds because $\gamma_W(\rho_0) \geq \gamma_V(\rho_0)$. Suppose the statement holds up to period $t - 1$. Let $\rho_t(W)$ and $\rho_t(V)$ denote the states at the beginning of period $t$ under $\delta_W$ and $\delta_V$, respectively. We have $\rho_t(W) \leq \rho_t(V)$. Because $\gamma_W$ and $\gamma_V$ are decreasing, we have $\gamma_W(\rho_t(W)) \geq \gamma_V(\rho_t(V)) \geq \gamma_V(\rho_t(V))$.

Applying the same argument as above, we can show that the platform offers a higher privacy level if $v$ is higher or $\sigma_0^2$ is higher. In either case, the platform has to choose a higher privacy level to induce the consumer to choose $a_{max}$, because she faces a higher incremental cost of increasing an activity level.

### 6.2 Time-Varying Type of the Consumer

I extend the results to the case in which the consumer’s type changes stochastically over time. The consumer’s type in period $t$ is $X_t$, and $(X_t)_{t \in \mathbb{N}}$ follows the AR(1) process: $X_0 \sim \mathcal{N}(0, \sigma_0^2)$, $X_{t+1} = \phi X_t + z_t$ with $\phi \in [0, 1]$, and $z_t \overset{iid}{\sim} \mathcal{N}(0, (1 - \phi^2)\sigma_0^2)$. The variance of each $z_t$ is normalized so that $Var(X_t) = \sigma_t^2$ for all $t \in \mathbb{N}$. As in the baseline model, the platform observes a signal $s_t = X_t + \epsilon_t$ with $\epsilon_t \sim \mathcal{N}(0, \frac{1}{\alpha_t} + \gamma_t)$.

Suppose that at the beginning of each period $t$, the platform holds posterior variance $\sigma_{t-1}^2$. If the consumer chooses $a_t$ and the platform sets $\gamma_t$, it observes a signal and holds posterior variance $\hat{\sigma}_t^2 = \frac{1}{\sigma_{t-1}^2 + \frac{1}{\alpha_t} + \gamma_t}$. Then the consumer receives $u(a_t) - v(\sigma_0^2 - \hat{\sigma}_t^2)$ and the platform receives $\sigma_0^2 - \hat{\sigma}_t^2$. After the state transition, the platform’s posterior variance on $X_{t+1}$ at the beginning of period $t + 1$
The following result generalizes Proposition 1.

**Proposition 6.** Suppose the platform commits to a stationary privacy policy. Let \((a^*_t)_{t \in \mathbb{N}}\) denote the equilibrium activity levels of this subgame. There is a cutoff value \(v^*(\gamma) \in \mathbb{R}_+\) with the following properties.

1. The posterior variance \(\sigma^2_t\) decreases in \(t\) and converges to some positive value as \(t \to \infty\).

   The consumer’s continuation value decreases over time.

2. If \(v > v^*(\gamma)\), then \(a^*_t = 0\) and \(\sigma^2_t = \sigma^2_0\) for all \(t \in \mathbb{N}\).

3. The cutoff \(v^*(\gamma)\) is increasing in \(\gamma\), and \(\lim_{\gamma \to \infty} v^*(\gamma) = \infty\).

**Proof.** The consumer’s problem is a dynamic programming with state variable \(\rho_t := \frac{1}{\sigma^2_t}\). The Bellman equation is

\[
V(\rho) = \max_{a \in A} u(a) - v \left( \sigma^2_0 - \frac{1}{\rho + \frac{1}{\sigma^2 + \gamma}} \right) + \delta_C V \left( \frac{1}{\phi^2 \left( \frac{1}{\rho + \frac{1}{\sigma^2 + \gamma}} \right) + (1 - \phi^2)\sigma^2_0} \right). \tag{18}
\]

By Blackwell’s sufficient condition, we can show that the equation has a unique solution, \(V^*\). We show \(V\) is decreasing and convex. The second term of the maximand is decreasing and convex in \(\rho\). The last term has the same property, because it is a composite of a decreasing convex function \(V\) and increasing concave function \(\phi^2 \left( \frac{1}{\rho + \frac{1}{\sigma^2 + \gamma}} \right) + (1 - \phi^2)\sigma^2_0\). The upper envelope of decreasing and convex functions is decreasing and convex, so the right-hand side of the Bellman equation has the same property. As a result \(V^*\) is decreasing and convex. A similar fixed point argument implies that for any \(\rho\), \(V^*(\rho)\) decreases in \(v\).

Given precision \(\rho\) in the current period, let \(a(\rho)\) denote the consumer’s optimal choice derived from the Bellman equation. Because the maximand of Bellman equation has increasing differences
in \((a, \rho), a(\rho)\) is increasing. Let \(g(\rho)\) denote the precision in the following period:
\[
g(\rho) = \frac{1}{\phi^2 \left( \frac{1}{\rho + \frac{1}{a(\rho) + \gamma}} \right) + (1 - \phi^2)\sigma_0^2}.
\] (19)

Because \(a(\rho)\) is increasing, so is \(g(\rho)\). If and only if \(a(\rho) > 0\), we have \(g(\rho_0) > \rho_0\). Thus we have one of the following dynamics. If \(a(\rho_0) = 0\), the consumer chooses \(a_t = 0\) for any period \(t\).

If \(a(\rho_0) > 0\), the consumer chooses \(a(\rho_t)\) in period \(t\), where \(\rho_t = g^t(\rho_0)\). Precision \(\rho_t\) increases in \(t\) and converges to some positive value, because \(\sup_x g(x) = \frac{1}{(1-\phi^2)\sigma_0^2} < \infty\). The consumer’s activity level \(a(\rho_t)\) is increasing in \(t\). The existence of cutoff \(v^*(\gamma)\) and the comparative statics follow from the same proof as Proposition 1.

The next result generalizes Theorem 2.

**Proposition 7.** Assume \(\delta_C = \delta_P\). Under Assumption 1, there is a Markov perfect equilibrium with the following properties:

1. The equilibrium is consumer-worst and platform-best, and the equilibrium outcome coincides with the one under long-run commitment.

2. The privacy level \(\gamma_t^*\) and posterior variance \(\sigma_t^2\) are decreasing in \(t\).

3. The platform’s strategy is greedy.

4. The ex ante payoff of the consumer decreases and that of the platform’s increases in persistence \(\phi\).

**Proof.** The construction of the equilibrium follows the proof of Theorem 2. Consider the following
set of functional equations:

\[ W(\rho, \gamma) = \max \left\{ u(a_{\text{max}}) - v \left( \sigma_0^2 - \frac{1}{\rho} + \frac{1}{a_{\text{max}} + \gamma} \right) + \delta \Pi \left( \frac{1}{\phi^2 \left( \frac{1}{\rho} + \frac{1}{a_{\text{max}} + \gamma} \right) + (1 - \phi^2)\sigma_0^2} \right) , \right\} \]

(20)

\[ -v \left( \sigma_0^2 - \frac{1}{\rho} \right) + \delta \Pi \left( \frac{1}{\phi^2 \left( \frac{1}{\rho} + \frac{1}{a_{\text{max}} + \gamma} \right) + (1 - \phi^2)\sigma_0^2} \right) \}

\[ V(\rho) = W(\rho, \gamma(\rho)), \]

(21)

\[ \Pi(\rho) = \max_{\gamma \geq 0} \sigma_0^2 - \frac{1}{\rho} + \frac{1}{1 + a(\rho, \gamma) + \gamma} + \delta \Pi \left( \frac{1}{\phi^2 \left( \frac{1}{\rho + a_{\text{max}}} + \gamma \right) + (1 - \phi^2)\sigma_0^2} \right) \]

(22)

where \( a(\rho, \gamma) \) is the maximizer of (20) and \( \gamma(\rho) \) is the maximizer of (22). We show that there exists \((W(\cdot), V(\cdot, \cdot), \Pi(\cdot), a(\cdot, \cdot), \gamma(\cdot))\) that satisfies the above equations.

Let \( V^* \) denote the solution of

\[ V(\rho) = \max \left\{ u(a_{\text{max}}) - v \left( \sigma_0^2 - \frac{1}{\rho} + \frac{1}{a_{\text{max}}} \right) + \delta \Pi \left( \frac{1}{\phi^2 \left( \frac{1}{\rho + a_{\text{max}}} \right) + (1 - \phi^2)\sigma_0^2} \right) , \right\} \]

(23)

The standard argument of dynamic programming implies that the equation has a unique solution \( V^* \), which is decreasing and convex. Let \( V = V^* \) in (20), which also determines the left-hand side \( W(\rho, \gamma) \). The maximizer \( a(\rho, \gamma) \) is increasing in \( \rho \) and \( \gamma \). Equation (22) uniquely determines \( \Pi(\cdot) \). Because the relevant contraction mapping for (22) maps an increasing function to an increasing function, \( \Pi(\cdot) \) is increasing. To solve the right-hand side of (22), the platform chooses \( \gamma(\rho) = \min \{ \gamma \in \mathbb{R}_+ : a(\rho, \gamma) = a_{\text{max}} \} \). Specifically, if \( a(\rho, 0) = a_{\text{max}} \), the platform chooses \( \gamma = 0 \). If \( a(\rho, 0) = 0 \), the platform choose \( \gamma \) that makes the consumer indifferent between \( a_{\text{max}} \)
and 0. As result we have

\[
W(\rho, \gamma(\rho)) = \max \left\{ u(a_{\max}) - v \left( \sigma_0^2 - \frac{1}{\rho + a_{\max}} \right) + \delta V \left( \frac{1}{\phi^2 \left( \frac{1}{\rho + a_{\max}} \right) + (1 - \phi^2) \sigma_0^2} \right),
\right. \\
\left. - v \left( \sigma_0^2 - \frac{1}{\rho} \right) + \delta V \left( \frac{1}{\phi^2 \left( \frac{1}{\rho} \right) + (1 - \phi^2) \sigma_0^2} \right) \right\}
\]

\[= V(\rho).\]

We can now construct an equilibrium such that the platform chooses \(\gamma(\rho)\) following state \(\rho\) and the consumer chooses \(a(\rho, \gamma)\) following state \(\rho\) and privacy level \(\gamma\). Equations (20) and (21) imply that the consumer has no profitable one-shot deviation after any history. Equation (22) implies the platform has no profitable one-shot deviation. The one-shot deviation principle implies \((\gamma(\cdot), a(\cdot, \cdot))\) consists of an equilibrium.

The consumer’s ex ante payoff \(V(\rho)\) is what she can secure by choosing \(a_t = a_{\max}\) for all \(t\) or \(a_t = 0\) for all \(t\) when the privacy levels are zero. Thus the equilibrium is consumer worst. The equilibrium is platform-best because the sum of the players’ payoffs is maximized (i.e., it is \(\frac{u(a_{\max})}{1-\rho}\)) and the consumer’s payoff is minimized. Point 2 follow from the same proof as Proposition 6, and Point 3 follows from the derivation of \(\gamma(\cdot)\) above.

We show Point 4. Take \(\phi\) and \(\hat{\phi} > \phi\). Let \(F_\phi\) and \(F_{\hat{\phi}}\) denote the relevant contracting mappings for the Bellman equation (21) given persistence \(\phi\) and \(\hat{\phi}\), respectively. Also let \(V_\phi\) and \(V_{\hat{\phi}}\) denote the corresponding value functions. We show \(V_\phi(\rho) \geq V_{\hat{\phi}}(\rho)\) for all \(\rho\). We have \(V_\phi(\rho) = F_\phi[V_\phi](\rho) \geq F_{\hat{\phi}}[V_\phi](\rho)\). Because \(F_\phi\) and \(F_{\hat{\phi}}\) are monotone, for any \(n\) we have \(V_\phi = F_\phi^n[V_\phi] \geq F_{\hat{\phi}}^n[V_\phi]\). Taking \(n \to \infty\), we have \(V_\phi \geq V_{\hat{\phi}}\). Thus the consumer is worse off when \(\phi\) is high.

### 6.3 General Noise Structure

We have assumed that the noise term of a signal is distributed according to \(\mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)\). However, all the results hold if the variance takes a more general form \(\sigma^2_\varepsilon(a, \gamma)\) that satisfies the following conditions: \(\frac{\partial \sigma^2_\varepsilon(a, \gamma)}{\partial \gamma} > 0, \frac{\partial \sigma^2_\varepsilon(a, \gamma)}{\partial a} < 0, \frac{\partial^2 \sigma^2_\varepsilon(a, \gamma)}{\partial a \partial \gamma} \geq 0, \lim_{\gamma \to \infty} \sigma^2_\varepsilon(a, \gamma) = \infty\), and \(\sigma^2_\varepsilon(0, \gamma) = \infty\). In
In this setting, we have
\[ \sigma_t^2 = \frac{1}{\sigma_{t-1}^2} + \frac{1}{\sigma_z^2(a_t, \gamma_t)}, \]
which implies
\[ \frac{\partial \sigma_t^2}{\partial a} = \frac{\partial \sigma_z^2}{\partial a} (a_t, \gamma_t) \cdot \frac{1}{\left( \frac{\sigma_z^2(a_t, \gamma_t)}{\sigma_{t-1}^2} + 1 \right)^2} < 0. \] (24)

Equation (24) implies that lower privacy (i.e., \( \sigma_{t-1}^2 \)) leads to a lower marginal cost of raising \( a_t \), which approaches 0 as \( \sigma_{t-1}^2 \rightarrow 0 \). The condition \( \frac{\partial^2 \sigma_z^2}{\partial a \partial \gamma} \geq 0 \) implies that the right-hand side of (24) increases in \( \gamma_t \), i.e., the marginal privacy cost decreases in \( \gamma_t \). Also, \( \frac{\partial \sigma_z^2}{\partial a} \) approaches 0 as \( \gamma_t \rightarrow \infty \). These conditions are sufficient to extend all the proofs. An example that satisfy all the conditions is \( \sigma_z^2(a, \gamma) = \frac{\gamma - a}{a} \). An example that satisfies all the conditions except \( \frac{\partial^2 \sigma_z^2}{\partial a \partial \gamma} \geq 0 \) is \( \sigma_z^2(a, \gamma) = \frac{\gamma}{a} \). In this case, \( \frac{\partial \sigma_t^2}{\partial a} \) could decrease in \( \gamma \), so greater privacy protection may lead to a higher marginal cost.

### 7 Conclusion

This paper studies a dynamic model of consumer privacy and platform data collection. The fundamental feature of the model is that the consumer uses a platform’s service more actively when she expects high privacy protection or she has already lost her privacy. A monopoly platform is able to collect information over time by committing to not collect too much information in early periods. In equilibrium, the consumer eventually loses privacy but keeps choosing a high level of activity. This outcome can arise even if a platform prioritizes user activity over data collection. Also, if the platform has weaker commitment, it may end up offering the highest privacy protection: The consumer refuses to provide information, anticipating that small privacy loss will lead to the complete privacy loss.

### References


Ball, Ian (2020a), “Dynamic information provision: Rewarding the past and guiding the future.” *Available at SSRN 3103127*.


Boone, Jan and Joel Shapiro (2006), “Selling to consumers with endogenous types.”


Easley, David, Shiyang Huang, Liyan Yang, and Zhuo Zhong (2018), “The economics of data.” *Available at SSRN 3252870*.


29


**Appendix**

A **A Microfoundation of the Privacy Cost and the Platform Revenue**

This appendix microfounds the payoff functions. We first describe a static interaction between a consumer and a “seller” in a product market, without considering the platform. We then embed it into the original model.

Consider a market that consists of a consumer and a seller. The consumer chooses a quantity \( q \in \mathbb{R} \) to maximize her utility \( Xq - \frac{1}{2}q^2 - pq \) given a unit price \( p \in \mathbb{R} \). Her type \( X \sim \mathcal{N}(\mu_0, \sigma_0^2) \) is now the willingness to pay for the product. The seller knows the prior distribution \((\mu_0, \sigma_0^2)\) and receives a signal \( s = X + \varepsilon \) with \( \varepsilon \sim \mathcal{N}(0, \sigma_\varepsilon^2) \). Only the consumer observes the true \( X \). The seller first sets \( p \) to maximize its revenue, then the consumer chooses \( q \) to maximize her utility.
Although a more general setup appears in the literature, I provide the analysis for completeness. Suppose the seller observes a signal and holds a posterior mean $\mu$ of $X$. The consumer’s demand is $q = X - p$, and thus the seller’s expected revenue is $p(\mu - p)$, so the optimal price is $p^* = \frac{\mu}{2}$ with the quantity $X - \frac{\mu}{2}$. The consumer’s expected payoff is

\[ \mathbb{E} \left[ (X - p^*)q^* - \frac{1}{2}(q^*)^2 \right] \]

\[ = \frac{1}{2} \mathbb{E} \left[ \left( X - \frac{1}{2} \mu \right)^2 \right] \]

\[ = \frac{1}{2} \mathbb{E} \left[ (X - \mu)^2 \right] + \frac{1}{8} \mathbb{E} \left[ (\mu - \mu_0)^2 \right] + \frac{1}{8} \mu_0^2 \]

\[ = \frac{1}{2} \mathbb{E} \left[ (X - \mu_0)^2 \right] - \frac{3}{8} \mathbb{E} \left[ (\mu - \mu_0)^2 \right] + \frac{1}{8} \mu_0^2. \]

The expectation $\mathbb{E}$ is with respect to the joint distribution of $(X, \mu)$. The first and the last terms do not depend on the signal structure. As a result, the signal decreases consumer surplus from this transaction by

\[ \frac{3}{8} \mathbb{E}[(\mu - \mu_0)^2] = \frac{3}{8} \cdot \frac{(\sigma_0^2)^2}{\sigma_0^2 + \sigma_\varepsilon^2}. \]  

(25)

The posterior variance $\sigma_t^2$ of $X$ and the variance $\sigma_\varepsilon^2$ of the noise $\varepsilon$ satisfy the equation \( \frac{1}{\sigma_t^2} = \frac{1}{\sigma_0^2} + \frac{1}{\sigma_\varepsilon^2} \). Solving this equation with respect to $\sigma_\varepsilon^2$ and plugging it into (25), we obtain

\[ \frac{3}{8} \cdot \frac{(\sigma_0^2)^2}{\sigma_0^2 + \frac{1}{\sigma_0^2} - \frac{1}{\sigma_\varepsilon^2}} = \frac{3}{8} \cdot \frac{(\sigma_0^2)^2}{\left( \frac{1}{\sigma_t^2} - \frac{1}{\sigma_0^2} \right)} + 1 = \frac{3}{8} \cdot \frac{(\sigma_0^2)^2}{\left( \frac{1}{\sigma_t^2} - \frac{1}{\sigma_0^2} \right)} \cdot \frac{\sigma_0^2}{\sigma_t^2} \cdot \left( \frac{1}{\sigma_t^2} - \frac{1}{\sigma_0^2} \right) = \frac{3}{8} \cdot \frac{(\sigma_0^2 + \sigma_t^2)}{\sigma_t^2}, \]

which is the original privacy cost function $v(\sigma_0^2 - \sigma_t^2)$ with $v = \frac{3}{8}$. Similarly, the information increases the seller’s revenue by

\[ \frac{1}{4} (\sigma_0^2 - \sigma_t^2), \]

(26)

which is equivalent to the platform’s payoff in the original model.

We obtain the original model by assuming that the platform sells information to sellers who use it to price discriminate the consumer. The detail is as follows. Outside of the platform, the consumer interacts with seller $t$ in period $t$, and her willingness to pay for seller $t$’s product is $X_t \sim
\( \mathcal{N}(\mu_0, \sigma_0^2) \), which is now IID across \( t \).\(^{22}\) The consumer’s activity on the platform in each period yields her utilities and generates signals for future sellers. Specifically, each period \( t \) consists of the following events: (i) the consumer chooses \( a_t \), (ii) the platform collects and sells information (by posting a price) to seller \( t \), and (iii) the seller sets the price and the consumer chooses quantity. Precisely, the platform can sell seller \( t \) the signal \( s_t = X_t + \epsilon_t \) with

\[
\epsilon_t \sim \mathcal{N}(0, \frac{1}{\sum_{s=1}^{t} \frac{1}{\sigma_s^2 + \gamma_s}}).
\]

That is, the platform collects information about the consumer’s willingness to pay for product \( t \) based on her past activities. We now obtain the baseline model: The platform’s per-period payoff, which is the revenue it can earn by selling the signal to seller \( t \), is \( \frac{1}{4} (\sigma_0^2 - \sigma_t^2) \), where \( \sigma_t^2 \) evolves according to (1). The consumer’s payoff is \( u(a_t) - \frac{3}{8} (\sigma_0^2 - \sigma_t^2) \).

\(^{22}\)I impose the IID assumption so that the prior distribution of the consumer’s willingness to pay in the product market is the same across \( t \).
the product topology for \( \Gamma \). Finally, let \( U_t(a, \gamma) \) denote the consumer’s flow payoff in period \( t \), given an outcome \((a, \gamma)\). Note that \( U_t(a, \gamma) \) depends only on \((a_1, \ldots, a_t)\) and \((\gamma_1, \ldots, \gamma_t)\).

Given any privacy policy \( \gamma \in \Gamma \), the consumer’s problem is

\[
\max_{a \in A} \sum_{t=1}^{\infty} \delta C \left[ u(a_t) - v \cdot \left( \sigma_0^2 - \frac{1}{\sigma_0^2 + \sum_{s=1}^{t} \frac{1}{\sigma_s^2 + \gamma_s}} \right) \right].
\]

(27)

For any \( \gamma \in \Gamma \), let \( A^*(\gamma) \subset A \) denote the set of all maximizers of (27).

**Lemma 3.** The correspondence \( A^*(\gamma) \) is non-empty, compact, and upper hemicontinuous in \( \gamma \).

**Proof.** First, \( A \) is compact with respect to product topology. Second, the objective function is continuous: To see this, take any sequence of the consumer’s choices \((a^n)_{n=1}^{\infty} \) such that \( a^n \to a^* \). This implies that for each \( t \in \mathbb{N} \), \( \lim_{n \to \infty} a^n_t \to a^*_t \). The consumer’s period-\( t \) payoff \( U_t(a, \gamma) := u(a_t) - v \cdot \left( \sigma_0^2 - \frac{1}{\sigma_0^2 + \sum_{s=1}^{t} \frac{1}{\sigma_s^2 + \gamma_s}} \right) \) is bounded from above and below by \( u(a_{\text{max}}) \) and \(-v\sigma_0^2\), respectively. Define \( B := \max(u(a_{\text{max}}), v\sigma_0^2) > 0 \). Take any \( \varepsilon > 0 \), and let \( T^* \) satisfy \( \delta C \cdot B < \varepsilon \). Take a sufficiently large \( n \) so that for each \( t \leq T^* \), \( \delta C^{-1} |U_t(a^n, \gamma) - U_t(a^*, \gamma)| < \frac{\varepsilon}{2T^*} \). These inequalities imply that

\[
\left| \sum_{t=1}^{T^*} \delta C^{-1} U_t(a^n, \gamma) - \sum_{t=1}^{T^*} \delta C^{-1} U_t(a^*, \gamma) \right| < \varepsilon.
\]

Thus the objective function in (27) is continuous in \( a \). Berge maximum theorem implies that \( A^*(\gamma) \) is non-empty, compact, and upper hemicontinuous in \( \gamma \). \( \square \)

Next, I show properties of the consumer’s objective \( U(a, \gamma) := \sum_{t=1}^{\infty} \delta C^{-1} U_t(a, \gamma) \). Abusing notation, for any \( a, a' \in A \), write \( a \geq a' \) if and only if \( a_t \geq a'_t \) for all \( t \in \mathbb{N} \). \( \geq \) is a partial order on \( A \), and \((A, \geq)\) is a lattice.

**Lemma 4.** For any \( \gamma \), \( U(a, \gamma) \) is supermodular in \( a \).

**Proof.** Take any \( \gamma \). Below, I omit \( \gamma \) and write \( U(\cdot, \gamma) \) as \( U(\cdot) \). Take any \( a, b \in A \). For each
For each \( t \in \mathbb{N} \) and \( n \in \mathbb{N} \), define \((a \lor b)^n\) as

\[
(a \lor b)^n = \begin{cases} 
\max(a_t, b_t) & \text{if } t \leq n, \\
 a_t & \text{if } t > n.
\end{cases}
\] (28)

Similarly, define \((a \land b)^n\) as

\[
(a \land b)^n = \begin{cases} 
\min(a_t, b_t) & \text{if } t \leq n, \\
 a_t & \text{if } t > n.
\end{cases}
\] (29)

Also, define \( b^n \) as

\[
b^n = \begin{cases} 
b_t & \text{if } t \leq n, \\
 a_t & \text{if } t > n.
\end{cases}
\] (30)

In product topology, \((a \lor b)^n \to a \lor b\), \((a \land b)^n \to a \land b\), and \( b^n \to b\) as \( n \to \infty \). For each \( t \in \mathbb{N} \) and \( n \in \mathbb{N} \), \( U_t(a, \gamma) \) is supermodular in \((a_1, \ldots, a_n)\), because it has increasing differences in each pair \((a_t, a_s)\). Thus for each \( n \in \mathbb{N} \), \( U(a) \) is supermodular in the first \( n \) activity levels, \((a_1, \ldots, a_n) \in \mathbb{R}^n_+ \). We then have

\[
U((a \lor b)^n) + U((a \land b)^n) \geq U(a) + U(b^n).
\]

Because \( U(\cdot) \) is continuous, we can take \( n \to \infty \) and obtain

\[
U(a \lor b) + U(a \land b) \geq U(a) + U(b).
\]

The supermodularity implies the consumer has the “greatest” optimal choice.

**Lemma 5.** For each \( \gamma \), the set \( \mathcal{A}^*(\gamma) \) of optimal choices is a sublattice of \( \mathcal{A} \). There is an \( \bar{a} \in \mathcal{A}^*(\gamma) \) such that for any \( a \in \mathcal{A}^*(\gamma) \), \( \bar{a} \geq a \).

**Proof.** First, Corollary 2 of Milgrom et al. (1994) implies that \( \mathcal{A}^*(\gamma) \) is a sublattice of \( \mathcal{A} \). Let \( \mathcal{A}^*_t(\gamma) \) denote the projection of \( \mathcal{A}^*(\gamma) \) on the \( t \)-th coordinate, i.e.,

\[
\mathcal{A}^*_t(\gamma) := \{ a \in \mathcal{A} : \exists a^* \in \mathcal{A}^*(\gamma) \text{ s.t. } a^*_t = a \}.
\] (31)

For each \( k \in \mathbb{N} \), let \( a^k \) denote an optimal policy such that the consumer chooses \( a_k = \max \mathcal{A}^*_k(\gamma) \) in period \( k \). Define \( \bar{a}^k := a^1 \lor \cdots \lor a^k \). Because \( \mathcal{A}^*(\gamma) \) is sublattice, for any \( k \in \mathbb{N} \), \( \bar{a}^k \) maximizes
We also have $\bar{a}^k \to \bar{a}$, where $\bar{a}_t = \max A^*_t(\gamma)$ for any $k \in \mathbb{N}$. Because $A^*(\gamma)$ is compact, $\bar{a} \in A^*(\gamma)$. By construction, for any $a \in A^*(\gamma)$, $\bar{a} \geq a$. 

For each $\gamma \in \Gamma$, let $\bar{a}(\gamma) := (\bar{a}_t(\gamma))_{t \in \mathbb{N}}$ denote the greatest strategy of the consumer defined in Lemma 5.

**Lemma 6.** For each $t \in \mathbb{N}$, $\bar{a}_t(\gamma)$ is upper semicontinuous in $\gamma \in \Gamma$.

**Proof.** By Lemma 3, $A^*(\gamma)$ is upper hemicontinuous, so the set $A^*_t(\gamma)$ of all activity levels that can be chosen in period $t$ is upper hemicontinuous in $\gamma$. Thus, it is enough to show that for any upper hemicontinuous and compact-valued correspondence $\phi : X \to \mathbb{R}$, $f(x) := \max \phi(x)$ is upper semicontinuous. To show this, take any $x_n \to x$. For each $n$, define $y_n = f(x_n)$. Because there is a subsequence $y_{n(k)}$ of $y_n$ that converges to $\lim \sup y_n$, it holds that $\lim \sup y_n = \lim y_{n(k)} = \lim f(x_{n(k)}) \leq f(\lim x_{n(k)}) = f(x)$. The inequality holds because $\phi$ has a closed graph. Connecting the left and right sides, we establish that $f(\cdot)$ is upper semicontinuous. 

**Lemma 7.** There exists an equilibrium in the game of long-run commitment power.

**Proof.** The platform’s objective is

$$\sum_{t=1}^{\infty} \delta^{t-1} \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \sum_{s=1}^{t} \frac{1}{\frac{1}{s\gamma} + \gamma_s} \right).$$  \hfill (32)
To show it is upper semicontinuous, take \( \gamma^n \to \gamma \). Then,

\[
\limsup_{n \to \infty} \sum_{t=1}^\infty \delta_P^{t-1} \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{\sum_{s=1}^t \frac{1}{\sigma_0 + \gamma^n + \gamma_s^n}} \right)
\]

\[
= \limsup_{k \to \infty} \sum_{n \geq k} \sum_{t=1}^\infty \delta_P^{t-1} \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{\sum_{s=1}^t \frac{1}{\sigma_0 + \gamma + \gamma_s}} \right)
\]

\[
\leq \lim_{k \to \infty} \sum_{t=1}^\infty \delta_P^{t-1} \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{\sum_{s=1}^t \sup_{n \geq k} \frac{1}{\sigma_0 + \gamma^n + \gamma_s^n}} \right)
\]

\[
= \sum_{t=1}^\infty \delta_P^{t-1} \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{\sum_{s=1}^t \lim_{k \to \infty} \sup_{n \geq k} \frac{1}{\sigma_0 + \gamma^n + \gamma_s^n}} \right)
\]

\[
= \sum_{t=1}^\infty \delta_P^{t-1} \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{\lim_{n \to \infty} \sup_{n \geq k} \frac{1}{\sigma_0 + \gamma^n + \gamma_s^n}} \right)
\]

\[
\leq \sum_{t=1}^\infty \delta_P^{t-1} \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{\lim_{n \to \infty} \sup_{n \geq k} \frac{1}{\sigma_0 + \gamma^n + \gamma_s^n}} \right)
\]

\[
\leq \sum_{t=1}^\infty \delta_P^{t-1} \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{\sigma_0 + \gamma + \gamma_s} \right)
\]

The second equality comes from the dominated convergence theorem, and the last inequality uses the upper semicontinuity of \( \bar{a}_s(\gamma) \). Thus, given the consumer’s optimal behavior, the platform’s objective is upper semicontinuous. Since \( \Gamma \) is compact, there is a privacy policy \( \gamma^* \) that maximizes the platform’s objective. The strategy profile \((\gamma^*, \bar{a}(\cdot))\) is an equilibrium. \(\square\)

### D Consumer Behavior Under a Stationary Privacy Policy:

#### Proof of Proposition 1

This Appendix uses notations introduced at the beginning of Appendix C.

#### D.1 Properties of Consumer Value Function

First, I prove useful properties of the consumer’s value function that hold for any privacy policy. Let \((\bar{a}_t(\gamma))_{t \in \mathbb{N}}\) denote the greatest best response of the consumer constructed in Lemma 5. For
each privacy policy \( \gamma \in \Gamma \), define

\[
V_{\gamma}(\rho) := \sum_{t=1}^{\infty} \delta_{t-1} \left[ u(\bar{a}_t(\gamma)) - v \left( \sigma_0^2 - \rho + \frac{1}{\rho + \sum_{s=1}^{t} \frac{1}{a_3^{(\gamma_s) + \gamma_s}}} \right) \right].
\] (33)

\( V_{\gamma}(\rho) \) is the consumer’s continuation value, starting from the posterior variance \( \sigma^2 = \frac{1}{\rho} \).

**Lemma 8.** For any \( \gamma \in \Gamma \), \( V_{\gamma}(\cdot) : \mathbb{R}_{++} \to \mathbb{R} \) is decreasing and convex. For any \( \rho > 0 \) and \( \Delta > 0 \), \( \lim_{\rho \to \infty} V_{\gamma}(\rho) - V_{\gamma}(\rho + \Delta) = 0 \).

**Proof.** Fix any privacy policy \( \gamma \). Hereafter, I omit \( \gamma \) from subscripts (thus, the consumer value function is \( V(\cdot) \)). Consider the “\( T \)-period problem,” in which the consumer’s payoff in any period \( s \geq T + 1 \) is exogenously set to zero. For any \( t \leq T \), let \( V_{t}^{T}(\rho) \) denote the consumer’s continuation value in the \( T \)-period problem starting from period \( t \) given \( \frac{1}{\sigma_{t-1}} = \rho \):

\[
V_{t}^{T}(\rho) = \max_{(a_t, \ldots, a_T) \in A_{t-1}} \sum_{s=t}^{T} \delta_{s-t} \left( u(a_s) - v \left( \sigma_0^2 - \frac{1}{\rho + \sum_{s=1}^{T} \frac{1}{a_3^{(\gamma_s) + \gamma_s}}} \right) \right).
\]

Here, \( \rho_{t-1} = \rho \), and \((\rho_t, \ldots, \rho_{T-1})\) are recursively defined by Bayes’ rule given \((a_t, \ldots, a_{T-1})\).

The standard argument of dynamic programming implies that for each \( t = 1, \ldots, T \),

\[
V_{t}^{T}(\rho) = \max_{a \in A} u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + \frac{1}{a + \gamma}} \right) + \delta_{s} V_{s}^{T+1} \left( \rho + \frac{1}{a + \gamma} \right),
\] (34)

where \( V_{T+1}^{T+1}(\cdot) \equiv 0 \). I use induction to show that \( V_{t}^{T}(\rho) \) is decreasing and convex. First, \( V_{T+1}^{T+1} \equiv 0 \) is trivially decreasing and convex. Suppose \( V_{t+1}^{T}(\rho) \) is decreasing and convex. Because \(-v \cdot \left( \sigma_0^2 - \frac{1}{\rho + \frac{1}{a + \gamma}} \right)\) has the same property and the upper envelope of decreasing convex functions are decreasing and convex, so does \( V_{t}^{T}(\cdot) \). This induction argument implies that for each \( T \), \( V_{t}^{T}(\rho) = V_{1}^{T}(\rho) \) is decreasing and convex. Also, for any \( \rho \) and \( \Delta > 0 \), \( \lim_{\rho \to \infty} V_{t}^{T}(\rho) - V_{T}(\rho + \Delta) \to 0 \).

Define \( V^{\infty}(\rho) := \lim_{T \to \infty} V_{t}^{T}(\rho) \). \( V^{\infty}(\rho) \) is decreasing and convex, because these properties are preserved under pointwise convergence. I show that \( V^{\infty}(\rho) \) is the value function of the original problem, i.e., \( V^{\infty}(\cdot) = V(\cdot) \). Take any \( \rho \), and let \((\bar{a}_1, \bar{a}_2, \ldots) \in A^{*}(\gamma)\) denote the optimal policy.

38
For any finite $T$,

$$V^T(\rho) \geq \sum_{s=1}^{T} \delta_{s-1}^C \left( u(\bar{a}_s) - v \left( \sigma_0^2 - \frac{1}{\rho_{s-1} + \frac{1}{a_s+\gamma_s}} \right) \right). \quad (35)$$

By taking $T \to \infty$, we obtain $V^\infty(\rho) \geq V(\rho)$. Suppose to the contrary that $V^\infty(\rho) > V(\rho)$. Then, there is a sufficiently large $T \in \mathbb{N}$ such that $V^T(\rho) = \frac{\delta_{T}^C}{1-\delta_C} \cdot \sigma_0^2 \geq V(\rho)$. If the consumer in the original infinite horizon problem adopts the $T$-optimal policy that gives $V^T(\rho)$ up to period $t$, then she can obtain a strictly greater payoff than $V(\rho)$, which is a contradiction. Thus, $V^\infty(\rho) = V(\rho)$.

Finally, I show that for any $\rho$ and $\Delta > 0$, $\lim_{\rho \to \infty} V(\rho) - V(\rho + \Delta) \to 0$. Suppose the consumer starting from $\rho + \Delta$ chooses the policy $(\hat{a}_t^\rho)_{t \in \mathbb{N}}$ that is optimal for $\rho$. Let $(\hat{\rho}_t)_{t=1}^\infty$ denote the induced sequence of the precisions after $\rho + \Delta$, i.e., $\hat{\rho}_t = \rho + \Delta + \sum_{s=1}^{t} \frac{1}{\hat{a}_s + \gamma_s}$. Note that $\hat{\rho}_t \geq \rho_t$ for all $t \in \mathbb{N}$. Then, it holds that $0 \leq V(\rho) - V(\rho + \Delta) \leq \sum_{t=1}^{\infty} \delta^C_{t-1} \left( \frac{1}{\rho} - \frac{1}{\rho + \Delta} \right) = \frac{1}{1-\delta_C} \left( \frac{1}{\rho} - \frac{1}{\rho + \Delta} \right)$. Thus, $\lim_{\rho \to \infty} V(\rho) - V(\rho + \Delta) = 0$.

### D.2 Proof of Proposition 1

**Proof.** If $\gamma_t$ is constant across $t$, the consumer problem is a stationary dynamic programming. Suppose $\gamma_t = \gamma \in \mathbb{R}_+$ for all $t$. The value function $V(\cdot)$ satisfies the Bellman equation

$$V(\rho) = \max_{a \in A} u(a) - v \left( \frac{\sigma_0^2}{\rho + \frac{1}{a+\gamma}} \right) + \delta_C V \left( \rho + \frac{1}{a+\gamma} \right). \quad (36)$$

Again, I suppress the dependence of $V(\cdot)$ on $\gamma$. Lemma 8 implies that $V(\cdot)$ is decreasing and convex. Thus, the maximand in (36) has the increasing differences in $(a, \rho)$. Thus, $\bar{a}(v, \gamma, \rho)$, the greatest maximizer, is increasing in $\rho$. Note that $\rho_t \leq \rho_{t+1}$, and the inequality is strict if and only if $a_t > 0$. As a result, the consumer’s optimal behavior is either (i) $a_t = 0$ for all $t$, or (ii) $a_1 > 0$ and $a_t$ is increasing in $t$. Now, define

$$v^*(\gamma) := \sup \left\{ v \in \mathbb{R} : \bar{a}(v, \gamma, \rho_0) > 0 \right\}, \quad \text{where} \quad \rho_0 = \frac{1}{\sigma_0^2}. \quad (37)$$

The consumer’s payoff from any strategy with $a_1 > 0$ is strictly decreasing in $v$ and strictly increasing in $\gamma$, whereas her payoff from $a_t \equiv 0$ is independent of $(v, \gamma)$. As a result, if $\bar{a}(v, \gamma, \rho_0) > 0$,
then \( \bar{a}(v', \gamma', \rho_0) > 0 \) for any \( v' < v \) and \( \gamma' > \gamma \). Therefore, the consumer’s behavior follows (i) and (ii) above if \( v > v^*(\gamma) \) and \( v < v^*(\gamma) \), respectively, and \( v^*(\gamma) \) is increasing in \( \gamma \). For any given \( v \), as \( \gamma \to \infty \), the consumer’s ex ante payoff from (say) \( a_t = a_{max} > 0 \) for all \( t \) becomes positive. Thus, \( \lim_{\gamma \to \infty} v^*(\gamma) = \infty \).

If \( v < v^*(\gamma) \), then \( a_t \geq a_1 > 0 \) for all \( t \). Since \( \gamma < \infty \), we obtain \( \lim_{t \to \infty} \rho_t = \infty \) with \( \rho_t := \frac{1}{\sigma_t} \). By Lemma 8, for any \( \rho > 0 \) and \( \Delta > 0 \), \( \lim_{\rho \to \infty} V(\rho) - V(\rho + \Delta) = 0 \). This, combined with \( \lim_{t \to \infty} \rho_t = \infty \), implies \( \lim_{t \to \infty} \bar{a}_t(v, \gamma, \rho_t) = a_{max} \).

\[ \square \]

E Equilibrium Under Long-Run Commitment: Proof of Theorem 1

E.1 Lemmas

I begin with two lemmas.

Proof of Lemma 2. Let \( \beta \) be any one of \( \gamma \) and \( \gamma' \). I decompose the consumer’s problem (27) into two steps. First, given any \( (a_t)_{t \in T} \), the consumer chooses \( (a_t)_{t \not\in T} \) to maximize the following hypothetical objective function:

\[
\sum_{t=1}^{\infty} \delta_t^{-1} \left[ 1_{\{t \not\in T\}} u(a_t) - v \cdot \left( \sigma_0^2 - \frac{1}{\sigma_0^2} + \sum_{s=1}^{t'} \frac{1}{\sigma_s} + \beta_s \right) \right].
\]  

(38)

The consumer receives a benefit of \( u(a_t) \) only in period \( t \not\in T \). This leads to a mapping that maps any \( (a_t)_{t \in T} \) to the (greatest) optimal choice of \( (a_t)_{t \not\in T} \). In the second step, the consumer chooses \( (a_t)_{t \in T} \) to maximize her original objective, taking the mapping \( (a_t)_{t \in T} \mapsto (a_t)_{t \not\in T} \) as given.

For any \( t \in T \), \( a_t \) affects (38) only through \( \frac{1}{a_t} + \gamma_t \), because \( 1_{\{t \not\in T\}} = 0 \). Also the same argument as in the proof of Lemma 4 implies that (38) is supermodular in \( (a_t)_{t \not\in T}, \left\{ \left( \frac{1}{a_s} + \gamma_s \right)^{-1} \right\}_{s \in T} \).

This implies that if \( \frac{1}{a_t(\gamma)} + \gamma_t \leq \frac{1}{a_t(\gamma')} + \gamma'_t \) for all \( t \in T \), then \( \bar{a}_t(\gamma) \geq \bar{a}_t(\gamma') \) for all \( t \in N \setminus T \).

Next, the platform can commit to a high privacy level to induce \( a_{max} \) in any period.

Lemma 9. There is a \( \gamma_{max} < +\infty \) such that if the platform commits to \( \gamma_t = \gamma_{max} \), then regardless of the privacy levels in other periods, the consumer chooses \( a_t = a_{max} \). Also, there is a \( \bar{\sigma}^2 \) such that if \( \sigma^2_{T-1} \leq \bar{\sigma}^2 \), then the consumer chooses \( a_t = a_{max} \) for all \( t \geq T \) and for any \( (\gamma_t)_{T \geq T} \).
Proof. Let $a'$ denote the second highest activity level in $A$. Take any $(a_t)_{t \in \mathbb{N}} \in A$ such that $a_t < a_{\text{max}}$. Suppose the consumer changes her action in period $t$ from $a_t$ to $a_{\text{max}}$. This change increases her period-$t$ benefit from $u(\cdot)$ by at least $u(a_{\text{max}}) - u(a') > 0$. The change also increases the sum of discounted privacy costs (from the perspective of period $t$) by

$$
\sum_{s=t}^{\infty} \delta^{s-t} \left( \sigma_0^2 - \frac{1}{\sigma_{t-1}^2} + \frac{1}{\frac{a_t}{\alpha_t + \gamma_{\text{max}}}} + \sum_{\tau=t+1}^{s} \frac{1}{\sigma_{\tau} + \gamma_{\text{max}}} \right) - \sum_{s=t}^{\infty} \delta^{s-t} \left( \sigma_0^2 - \frac{1}{\sigma_{t-1}^2} + \frac{1}{\frac{a_{\text{max}}}{\alpha_t + \gamma_{\text{max}}}} + \sum_{\tau=t+1}^{s} \frac{1}{\sigma_{\tau} + \gamma_{\text{max}}} \right)
\leq \sum_{s=t}^{\max} \delta^{s-t} \left( \sigma_0^2 - \frac{1}{\sigma_{t-1}^2} + \frac{1}{\frac{1}{\alpha_t + \gamma_{\text{max}}}} \right) - \sum_{s=t}^{\infty} \delta^{s-t} \left( \sigma_0^2 - \frac{1}{\sigma_{t-1}^2} + \frac{1}{\frac{1}{\alpha_t + \gamma_{\text{max}}}} \right)
= \frac{1}{1 - \delta} \left( \frac{1}{\sigma_{t-1}^2} + \frac{1}{\frac{1}{\alpha_t + \gamma_{\text{max}}}} - \frac{1}{\sigma_{t-1}^2} + \frac{1}{\frac{1}{\alpha_t + \gamma_{\text{max}}}} \right) =: D(\sigma_{t-1}^2, \gamma_{\text{max}}).
$$

First, we have $\lim_{\gamma_{\text{max}} \to \infty} D(\sigma_0^2, \gamma_{\text{max}}) = 0$, and $D(\sigma_0^2, \gamma_{\text{max}}) \leq D(\sigma_t^2, \gamma_{\text{max}})$ for any $\sigma_t^2 \leq \sigma_0^2$. Thus, for any $\gamma_{\text{max}}$ such that $D(\sigma_0^2, \gamma_{\text{max}}) < u(a_{\text{max}}) - u(a')$, the consumer’s optimal action is $a_{\text{max}}$ in period $t$. Also, even for $\gamma_{\text{max}} = 0$, $\lim_{\sigma_{t-1}^2 \to 0} D(\sigma_{t-1}^2, 0) = 0$. Thus for a sufficiently small $\sigma_{t-1}^2$, the consumer chooses $a_t = a_{\text{max}}$ for all $t \geq t$ under any (continuation) privacy policy. \hfill $\square$

### E.2 Proof of Theorem 1

Proof. First, I show $\lim_{t \to \infty} \sigma_t^2 = 0$. Let $\gamma^*$ denote the equilibrium privacy policy, and let $a^*$ denote the equilibrium activity levels. Suppose to the contrary that $\lim_{t \to \infty} \sigma_t^2 \neq 0$. Because $\sigma_t^2$ is decreasing, $\lim_{t \to \infty} \sigma_t^2 > 0$ exists. This implies $\frac{1}{a_t} + \gamma_t^* \to \infty$. I derive a contradiction.

Let $\gamma_{\text{max}} \in [0, +\infty)$ denote the privacy level defined in Lemma 9—i.e., the consumer chooses $a_t = a_{\text{max}}$ if $\gamma_t = \gamma_{\text{max}}$. If the platform commits to $\gamma_t = \gamma_{\text{max}}$, the variance of the noise of the signal in period $t$ is $B := \frac{1}{a_{\text{max}}} + \gamma_{\text{max}}$. Take $T^*$ such that for all $t \geq T^*$, $\frac{1}{a_t} + \gamma_t^* > B$. If the platform replaces $\gamma_t^*$ with $\gamma_{\text{max}}$ for all $t \geq T^*$ and commits to such a new policy ex ante, then the precision of the signal increases from $\frac{1}{a_t + \gamma_t^*}$ to $B^{-1}$ in any period $t \geq T^*$. Lemma 2 implies that after the policy change, the consumer also chooses a weakly greater $a_t$ for all $t < T^*$. To sum up, the platform can strictly increase its profit by replacing $\gamma_t^*$ with $\gamma_{\text{max}}$ for all $t \geq T^*$, which is a contradiction. The second part of Lemma 9 then implies that there is some $T$ such that for all $t \geq T$, $a_t^* = a_{\text{max}}$.  

41
Next, I write $\gamma_t^*(v)$ to clarify the dependence of the equilibrium privacy level on $v$. Suppose to the contrary that there is a $T$ such that, for any $v$, there is some $v \geq v$ such that $\gamma_t^*(v) = 0$ for some $t \leq T$. Then we can find $v_n \to \infty$ and $t^* \leq T$ such that $\gamma_t^*(v_n) = 0$ for all $n$. However, for a sufficiently large $v_n$, $a_{t^*} = 0$ if $\gamma_t^*(v_n) = 0$. The reason is as follows. If the consumer changes her activity level from 0 to some $a > 0$, her gross payoff from $u(\cdot)$ increases by at most $u(a_{\max})$. In contrast, her privacy cost increases by at least

$$v \left( \frac{1}{\sigma_0} + (t^* - 1)a_{\max} - \frac{1}{\sigma_0} + (t^* - 1)a_{\max} + a_{\min} \right) > 0,$$

where $a_{\min}$ is the smallest positive activity level in $A$. This expression is independent of the history and diverges to $\infty$ as $v \to \infty$. Thus for a large $v_n$, the consumer prefers $a = 0$. However, the platform can then commit to a high privacy level for period $t^*$ to induce $a_{t^*} > 0$. By the same argument as the previous paragraph, this change also weakly increases the activity levels in all other periods. This is a contradiction.

Point 3 follows from Theorem 2 and Corollary 1. \qed

**F General Payoffs: Proof of Proposition 2**

*Proof of Proposition 2.* First, we show Point 1. Note that Point 1 is a “non-equilibrium” result and only shows the existence of the platform’s strategy that induces the long-run privacy loss. Define $v := \sup_{a, \in A, x \in [0, \sigma_0^2]} |\frac{\partial u}{\partial \sigma^2}|$ and $C(x) = v(\sigma_0^2 - x)$. Also, define $u(a) = \beta a$ for $\beta > 0$ that satisfies $\hat{u}(a, \sigma^2) - \hat{u}(a', \sigma^2) \geq \beta$ for any $\sigma^2$ and $a > a'$, $\sigma^2$. We have $C'(\sigma^2) = -v \leq \frac{\partial u}{\partial \sigma^2}(a, \sigma^2)$ and \ $\hat{u}(a', \sigma^2) - \hat{u}(a, \sigma^2) \geq u(a') - u(a) > 0$ for any $a' > a$. As a result, the consumer incurs a lower marginal privacy cost and a higher marginal gross benefit under $\hat{u}$ than under $(u, C)$ uniformly across all $\sigma^2$. Proposition 1 implies that there is a $\gamma^*$ such that if the platform commits to $\gamma_t = \gamma^*$ for all $t \in \mathbb{N}$, the consumer’s optimal behavior induces $a_t \to a_{\max}$ and $\sigma_t^2 \to 0$ when she has $(u, C)$. Suppose to the contrary that $\sigma_t^2$ does not converge to 0 when the consumer with $\hat{u}$ acts optimally. Then for some $T \in \mathbb{N}$, $a_t = 0$ for all $t \geq T$. In any period $t \geq T$, the consumer with $(u, C)$ strictly prefers some $a_t > 0$ to $a_t = 0$ (i.e., Point 1 of Proposition 1). The consumer with $\hat{u}$ can mimic this strategy to strictly increase her continuation value relative to taking zero activity levels forever. This is a contradiction. Finally, $\sigma_t^2 \to 0$ implies $a_t \to a_{\max}$ by the same argument.
as Lemma 9.

Second, we show Point 2. It is a result about equilibrium, so we consider an equilibrium of
the entire game, in which the platform can commit to any (possibly nonstationary) privacy policy.
Throughout the proof, we fix the consumer’s discount factor. For each \(\delta P \in [0, 1]\), let \((\sigma^2_t(\delta_P))_{t \in \mathbb{N}}\)
denote the equilibrium sequence of posterior variances, and define \(\sigma^2_\infty(\delta) = \lim_{t \to \infty} \sigma^2_t(\delta_P)\).
Suppose to the contrary that we can find a sequence \(\delta_n \to 1\) and \(\varepsilon > 0\) such that \(\sigma^2_\infty(\delta_n) \geq \varepsilon\) for all \(n\). Then, the platform’s average revenue satisfies
\[
(1 - \delta_n) \sum_{t=1}^\infty \Pi(a_t(\delta_n), \sigma^2_t(\delta_n)) \leq \Pi(a_{\max}, \varepsilon).
\]
Point 1 implies that the platform has a privacy policy \(\gamma^*\) that induces \(\lim_{t \to \infty} (a_t, \sigma^2_t) = (a_{\max}, 0)\).
As \(\delta_P \to 1\), the platform’s average payoff converges to \(\Pi(a_{\max}, 0)\). Thus, a sufficiently patient
platform strictly prefers \(\gamma^*\) to the equilibrium policy, which is a contradiction.

G Myopic Consumer

If the consumer is myopic, we can characterize the equilibrium. Let \(a^*(\gamma, \sigma^2) \in A\) denote the
best response of a myopic consumer, given a privacy level \(\gamma\) in the current period and the posterior
variance \(\sigma^2\) from the previous period:
\[
a^*(\gamma, \sigma^2) := \max \left\{ \arg \max_{a \in A} \left[ u(a) - v \left( \sigma_0^2 - \frac{1}{\sigma^2 + \frac{1}{a + \gamma}} \right) \right] \right\}.
\]
(39)
The following result characterizes the equilibrium.

Claim 1. Suppose the consumer is myopic. Consider the greedy policy of the platform—i.e., given
the consumer’s best response (39), it chooses privacy level \(\gamma_t\) to myopically maximize the preci-
sion of the signal in each period \(t\). The sequence \((\gamma_t^*)_{t \in \mathbb{N}}\) obtained in this way is the platform’s
equilibrium strategy. Also, the same outcome arises under one-period commitment.

I prove two results that lead to Claim 1.
Lemma 10. If the consumer is myopic, the platform adopts a greedy policy that myopically maximizes the precision of the signal in each period. Formally, the equilibrium policy \((\gamma^*_1, \gamma^*_2, \ldots)\) is recursively defined as follows:

\[
\gamma^*_t \in \arg \min_{\gamma \geq 0} \frac{1}{a^*(\gamma, \tilde{\sigma}^2_{t-1})} + \gamma, \forall t \in \mathbb{N},
\]  \hspace{1cm} (40)

\[
\hat{\sigma}^2_0 = \sigma^2_0,
\]  \hspace{1cm} (41)

\[
\hat{\sigma}^2_t = \frac{1}{\sigma^2_{t-1}} + \frac{1}{a^*(\gamma^*_t, \tilde{\sigma}^2_{t-1}) + \gamma_t}, \forall t \in \mathbb{N}.
\]  \hspace{1cm} (42)

Also, given any privacy policy \(\gamma\), let \((\sigma^2_t)_{t \in \mathbb{N}}\) denote the posterior variances induced by the consumer’s optimal behavior. Then the optimal policy attains uniformly lower posterior variances:

\[
\hat{\sigma}^2_t \leq \sigma^2_t \text{ for all } t \in \mathbb{N}.
\]

Proof. Lemma 1 implies \(a^*(\gamma, \sigma^2)\) is increasing in \(\gamma\) and decreasing in \(\sigma^2\). Take any privacy policy \((\gamma_t)_{t \in \mathbb{N}}\) and let \((\sigma^2_t)_{t \in \mathbb{N}}\) denote the sequence of posterior variances induced by \(a^*(\cdot, \cdot)\). I show \(\hat{\sigma}^2_t \leq \sigma^2_t\) for all \(t \in \mathbb{N}\). The inequality holds with equality for \(t = 0\). Take any \(\tau \in \mathbb{N}\). Suppose \(\hat{\sigma}^2_t \leq \sigma^2_t\) for \(t = 0, \ldots, \tau - 1\). It holds that

\[
\sigma^2_\tau = \frac{1}{\sigma^2_{\tau-1}} + \frac{1}{a^*(\gamma_\tau, \sigma^2_{\tau-1}) + \gamma_\tau} \geq \frac{1}{\sigma^2_{\tau-1}} + \frac{1}{a^*(\gamma_\tau, \sigma^2_{\tau-1}) + \gamma_\tau} \geq \frac{1}{\hat{\sigma}^2_{\tau-1}} + \frac{1}{a^*(\gamma_\tau, \sigma^2_{\tau-1}) + \gamma_\tau} = \hat{\sigma}^2_\tau.
\]

The first inequality follows from the inductive hypothesis and decreasing \(a^*(\gamma, \cdot)\). The second inequality follows from (40). We now have \(\hat{\sigma}^2_t \leq \sigma^2_t\) for all \(t\), which implies the privacy policy described by (40), (41), and (42) is optimal.

Corollary 2. Assume the consumer is myopic, and let \((a^*, \gamma^*)\) denote the equilibrium outcome under long-run commitment in Lemma 10. The same outcome \((a^*, \gamma^*)\) arises in an equilibrium under one-period commitment.

Proof. Suppose the platform has one-period commitment power. Consider the following strategy profile: At any node with posterior variance \(\sigma^2\), the platform sets \(\gamma \in \arg \min_{\gamma \geq 0} \frac{1}{a^*(\gamma, \sigma^2)} + \gamma\), and the consumer acts according to \(a^*(\cdot, \sigma^2)\). Then, \((a^*, \gamma^*)\) arises on the path of play. The platform’s deviation increases the posterior variances in all periods, an decreases its profit (Lemma 10).
H Proof of Proposition 3

Proof. Let \( a' \) denote the second highest activity level in \( A \). Take any \( B \) that satisfies \( u(a_{\text{max}}) - u(a') - \frac{v}{1 - \delta} B > 0 \). In any period, if the consumer chooses \( a_t = a_{\text{max}} \) instead of \( a_t \in A \setminus \{a_{\text{max}}\} \), her gross payoff increases by at least \( u(a_{\text{max}}) - u(a') > 0 \), and her privacy cost increases by at most \( \frac{v}{1 - \delta} B \). For \( \sigma_0^2 \leq B \), the consumer chooses \( a_{\text{max}} \), and the platform optimally chooses \( \gamma_t = 0 \). \( \square \)

I Consumer-Worst Equilibrium: Proof of Theorem 2

Proof. We use precision \( \rho_t = \frac{1}{\sigma_t^2} \) as a state variable of MPE. Let \( \gamma(\rho) \) denote the platform’s choice of \( \gamma_t \) given \( \rho_{t-1} = \rho \), and let \( a(\rho, \gamma) \) denote the consumer’s choice of \( a_t \) given \( (\rho_{t-1}, \gamma_t) = (\rho, \gamma) \). We adopt notations \( \frac{1}{0} = \infty \) and \( \frac{1}{\infty} = 0 \). Consider the following set of functional equations:

\[
W(\rho, \gamma) = \max_{a \in \{0, a_{\text{max}}\}} \left\{ u(a) - v\left(\sigma_0^2 - \frac{1}{\rho + \frac{1}{a + \gamma}}\right) + \delta V\left(\rho + \frac{1}{\sigma_0^2 - \frac{1}{\rho + a + \gamma}}\right)\right\}, \quad (43)
\]

\( a(\rho, \gamma) \) is the largest maximizer of the right-hand side of (43).

\[
V(\rho) = W(\rho, \gamma(\rho)), \quad (44)
\]

\[
\Pi(\rho) = \max_{\gamma \geq 0} \sigma_0^2 - \frac{1}{\rho + \frac{1}{a(\rho, \gamma) + \gamma}} + \delta \Pi\left(\rho + \frac{1}{\sigma_0^2 - \frac{1}{a(\rho, \gamma) + \gamma}}\right), \quad (45)
\]

\( \gamma(\rho) \) is the largest maximizer of the right-hand side of (45).

We construct \((W(\cdot), V(\cdot, \cdot), \Pi(\cdot), a(\cdot, \cdot), \gamma(\cdot))\) that satisfies the equations. Let \( V^* \) denote the solution of

\[
V(\rho) = \max_{a \in \{0, a_{\text{max}}\}} \left\{ u(a) - v\left(\sigma_0^2 - \frac{1}{\rho + a}\right) + \delta V(\rho + a)\right\}. \quad (47)
\]

Blackwell’s condition for a contraction implies that the equation has a unique solution \( V^* \). Also the relevant contraction mapping maps any decreasing convex function to a decreasing convex function. Thus \( V^* \) is decreasing and convex. Let \( W(\rho, \gamma) \) satisfy (20) with \( V = V^* \). If the consumer increases activity level from 0 to \( a_{\text{max}} \), she incurs the privacy cost and the loss from a lower continuation value. These losses are smaller when \( \rho \) and \( \gamma \) are higher, so the maximizer \( a(\rho, \gamma) \) is increasing in \( \rho \) and \( \gamma \). Given \( a(\rho, \gamma) \), equation (22) defines a Bellman equation. The similar
argument as the case of equation (43) implies that we have a unique solution $\Pi(\cdot)$ to equation (22) and it is increasing. Equation (46) then determines $\gamma(\rho)$.

The remaining equation is (44). Consider the platform’s problem in the right-hand side of (22). Note that $\Pi(\cdot)$ is increasing. If $a(\rho, 0) = a_{\text{max}}$, the platform chooses $\gamma = 0$. If $a(\rho, 0) = 0$, the platform chooses $\gamma$ that makes the consumer indifferent between $a_{\text{max}}$ and 0. As result we have

$$W(\rho, \gamma(\rho)) = \max_{a \in \{0, a_{\text{max}}\}} \left\{ u(a) - v \left( \sigma_0^2 - \frac{1}{\rho + a} \right) + \delta V(\rho + a_{\text{max}}) \right\} = V(\rho).$$

Thus we have constructed $(W(\cdot), V(\cdot, \cdot), \Pi(\cdot), a(\cdot, \cdot), \gamma(\cdot))$ that satisfies equations (43)-(46).

We show that $(\gamma(\cdot), a(\cdot, \cdot))$ consists of an equilibrium. Equations (43) and (44) imply that the consumer has no profitable one-shot deviation after any history. Equation (22) implies the platform has no profitable one-shot deviation. The one-shot deviation principle implies $(\gamma(\cdot), a(\cdot, \cdot))$ consists of an equilibrium.

Equation (44) implies that in this equilibrium, the consumer is as if she faces the platform that sets $\gamma_t = 0$ after history. Thus the equilibrium is consumer-worst. Under the common discount factor, the sum of the ex ante payoffs of the consumer and the platform is at most $\frac{u(a_{\text{max}})}{1 - \delta}$. Thus the equilibrium maximizes the sum of the players’ payoffs and minimized the consumer’s payoff across all equilibria. Thus the equilibrium is platform-best whenever $\delta_C = \delta_P$.

We show Point 2. Note that the platform’s strategy is $\gamma(\rho) = \min \{ \gamma \in \mathbb{R}_+ : a(\rho, \gamma) = a_{\text{max}} \}$, and $a(\rho, \gamma)$ is increasing in $\rho$. Thus $\gamma(\rho)$ is decreasing. Indeed we have $\rho_{t+1} \geq \rho_0 + t \frac{1}{a_{\text{max}} + \gamma(\rho)}$ because the platform sets the highest privacy level in the initial period. We now have $\lim_{t \to \infty} \rho_t = \infty$. Proposition 3 implies $\gamma_t = 0$ after some finite $t$. Point 2 follow from the same proof as Proposition 6, and Point

\[ \quad \]

J \quad \textbf{Proof of Corollary 1}

We formally describe the game of full commitment. Before $t = 1$, the platform publicly commits to a mapping $\gamma(\cdot) : \bigcup_{s=1}^{\infty} A^s \to \mathbb{R}_+$, which maps past actions $(a_1, \ldots, a_{t-1}) \in A^{t-1}$ to the privacy level $\gamma_t$ in period $t \geq 2$.\(^{23}\) Knowing $\gamma(\cdot)$, the consumer chooses activity levels over time.

\(^{23}\)To simplify notations, we focus on deterministic policies. However, Corollary 1 holds even if the platform can use a stochastic policy that draws $\gamma_t$ from some distribution that depends on past activity levels and privacy levels.
Proof of Corollary 1. We show the first part. Let \((\gamma^*_t)_{t \in \mathbb{N}}\) denote the (on-path) equilibrium privacy levels in the consumer-worst equilibrium. I show that if the platform commits to \((\gamma^*_t)_{t \in \mathbb{N}}\) ex ante, the consumer chooses \(a_{max}\) in all periods. To see this, we compare (i) the consumer’s (single-agent) decision problem given \((\gamma^*_t)_{t \in \mathbb{N}}\) under long-run commitment to (ii) her problem given the platform’s Markov strategy under one-period commitment. Take any strategy of the consumer, and consider the privacy level in period \(t\). In (i), the consumer faces \(\gamma^*_t\). In (ii), the consumer faces \(\gamma^*_{n+1}\), where \(n\) is how many times the consumer chose \(a = a_{max}\) instead of \(a = 0\) before (and including) period \(t - 1\). We have \(\gamma^*_{n+1} \geq \gamma^*_t\) after any history. Thus for any strategy, the consumer faces lower privacy levels in all periods under long-run commitment than one-period commitment. As a result, the consumer’s optimal payoff under the former cannot exceed the one under the latter. Now, the consumer’s optimal strategy under one-period commitment is \(a_t = a_{max}\) for all \(t \in \mathbb{N}\). She can achieve the same outcome under long-run commitment by choosing \(a_t = a_{max}\) for all \(t \in \mathbb{N}\). As a result, the consumer prefers \(a_t = a_{max}\) for all \(t\) under long-run commitment. We have shown that if the platform commits to \((\gamma^*_t)_{t \in \mathbb{N}}\) under long-run commitment, the consumer chooses \(a_{max}\) in all periods.

Now, suppose to the contrary that the platform is strictly better off under long-run commitment. Multiplying a positive constant to the platform’s payoff does not change the optimal policy, so we can assume that the platform’s flow payoff equals the consumer’s privacy cost, \(v[\sigma^2_0 - \sigma^2_t]\). Then the sum of the discounted payoffs of the consumer and the platform is \(\sum_{t=1}^{\infty} u(a_t)\), which is at most \(\frac{u(a_{max})}{1-\delta}\) (recall the assumption of the common discount factor). In the consumer-worst equilibrium, the consumer’s ex ante payoff \(U_0\), which is her payoff when the platform sets \(\gamma_t = 0\) in any period. Thus if the platform is strictly better off under full commitment, the consumer’s payoff is strictly lower than \(U_0\). This is a contradiction: Regardless of the platform’s policy, the consumer can secure \(U_0\) by adopting a strategy that is optimal against \(\gamma_t = 0\) for all \(t\).

Similarly, the platform with full commitment can adopt the Markov strategy of the consumer-worst equilibrium. However, the platform cannot lower the consumer’s payoff below \(U_0\) By the same argument above, the platform’s ex ante payoff is the same between full commitment and short-run commitment.
**K Consumer-Best Equilibrium: Proof of Theorem 3**

*Proof.* We write \( \delta_C = \delta \geq 1/2 \). Following the proof of Theorem 2, we write a Markov strategy of each player as a function of a precision \( \rho_t = \frac{1}{\sigma_t^2} \). Let \( \rho_0 = \frac{1}{\sigma_0^2} \). Define the strategy profile as follows: Let \( \gamma(\rho_0) = \infty \). For any \( \rho > \rho_0 \), let \( \gamma(\rho) \) be the strategy in the consumer-worst MPE in Theorem 2. Let \( a(\rho_0, \infty) = a_{\max} \), and \( a(\rho_0, \gamma) = 0 \) for any \( \gamma < \infty \). For any \( \rho > \rho_0 \), let \( a(\rho, \gamma) \) be her strategy in the MPE in Theorem 2. On the path of play, \((\gamma_t, a_t) = (\infty, a_{\max}) \) is chosen in all periods. This outcome is best for the consumer and worst for the platform.

Given the above strategy profile, suppose the platform deviates and offers \( \gamma < \infty \) at \( \rho = \rho_0 \). If the consumer chooses \( a = 0 \), her future continuation value is \( \frac{1}{1-\delta} u(a_{\max}) \), which is her best possible outcome. As a result, a necessary condition for the consumer to choose \( a_{\max} \) following the platform’s deviation at \( \rho_0 \) is that she obtains a nonnegative payoff in the current period:

\[
 u(a_{\max}) - v \left( \frac{1}{\rho_0} - \frac{1}{\rho_0 + \frac{1}{a_{\max} + \gamma}} \right) = u(a_{\max}) - v \frac{1}{\rho_0 \left( \rho_0 + \frac{1}{a_{\max} + \gamma} \right)} \geq 0. \tag{48}
\]

Let \( \hat{\gamma}(\rho_0) \) denote the minimum \( \gamma \) that satisfies this constraint. \( \hat{\gamma}(\rho_0) \) is decreasing in \( \rho_0 \), positive for a small \( \rho_0 \), and \( \lim_{\rho_0 \to 0} \hat{\gamma}(\rho_0) = \infty \).

Take any \( \bar{\rho} > 0 \) such that \( \bar{\rho} + \frac{1}{a_{\max} + \gamma(\bar{\rho})} \leq \rho(0) \), where \( \rho(0) \) is the cutoff constructed for Theorem 2, above which \((\gamma, a) = (0, a_{\max}) \) is chosen. For any initial state \( \rho_0 \leq \bar{\rho} \), the above strategy profile is an equilibrium. First, it is an equilibrium at any (off-path) state \( \rho > \rho_0 \) by construction. At \( \rho = \rho_0 \), the consumer has no profitable deviation when the platform offers \( \gamma = \infty \), because she can receive the best payoff of \( u(a_{\max}) \) in the current and any future periods. Suppose that the platform deviates and chooses \( \gamma_t < \infty \). Suppose to the contrary that the consumer strictly benefits from the one-shot deviation to \( a = a_{\max} \). Then, \( \rho_0 + \frac{1}{a_{\max} + \gamma} \leq \rho(0) \) must hold. Thus her payoff in period \( t \) is at most \( u(a_{\max}) \), whereas her continuation value from period \( t + 1 \) is nonpositive (recall that in the consumer-worst equilibrium, the consumer’s continuation payoff starting from \( \rho \leq \rho(0) \) is nonpositive). In contrast, if the consumer chooses \( a_t = 0 \) and follows her strategy thereafter, her payoff is \( \frac{\delta}{1-\delta} u(a_{\max}) \), because she sets \( a_t = 0 \) in period \( t \) and the state remains \( \rho_0 \). Thus, the consumer has a profitable deviation only if \( \frac{\delta}{1-\delta} u(a_{\max}) < u(a_{\max}) \), which contradicts \( \delta \geq 1/2 \). \( \square \)
Online Appendix: Not for Publication

L Numerical Examples for Section 4

L.1 Non-monotonicity of flow payoffs under a stationary privacy policy

Consider the following parametrization: \( A = \{0, 1, 3\} \), \( u(1) = 1 \), \( u(3) = 1.04 \), \( v = 2 \), \( \delta = 0.9 \), \( \sigma_0^2 = 0.1 \), and \( \gamma_t = 0 \) for all \( t \in \mathbb{N} \). Define \( U(a) := \sum_{t=1}^{\infty} \delta^{t-1} \left[ u(a) - v \left( \frac{\sigma_0^2 - 1}{\sigma_0^2 + ta} \right) \right] \). First, under the consumer’s optimal policy, there is some period \( t^* \) such that \( a_{t^*-1} = 1 \) and \( a_{t^*} = 3 \). The reason is as follows. Proposition 1 states that the optimal policy under a stationary privacy policy is either \( a_t = 0 \) for all \( t \), or \( a_t \) is positive and weakly increasing in \( t \). \( U(3) > U(0) \) implies that the consumer chooses the latter, and \( U(1) > U(3) \) implies that \( a_1 = 1 \). Because \( a_t \) converges to 3, there is a \( t^* \) such that \( a_{t^*-1} = 1 \) and \( a_{t^*} = 3 \). The flow payoff increases from \( t^* - 1 \) to \( t^* \) if \( u(3) - v \left( \frac{\sigma_0^2 - 1}{\sigma_0^2 + 1 + 3} \right) > u(1) - v \left( \frac{\sigma_0^2 - 1}{\sigma_0^2 + 1} \right) \). The inequality holds if \( u(3) - u(1) > B := \frac{3v}{\frac{1}{\sigma_0^2} + 4} \left( \frac{1}{\sigma_0^2} + 1 \right) \). We can numerically show that \( U(1) \approx 9.17 \), \( U(3) = 9.13 \), \( u(3) - u(1) = 0.04 \), and \( B = 0.039 \). Thus we have \( U(1) > U(3) > U(0) \) and \( u(3) - u(1) > B \), so the consumer receives a higher flow payoff in period \( t^* \) than in \( t^* - 1 \).

L.2 Non-monotonicity of \( a_t \) in equilibrium

Figure 1 depicts the equilibrium dynamics for a myopic consumer. I assume \( A = \{0, 0.01, 0.02, \ldots, 2\} \) and use Claim 1 in Appendix G to compute an equilibrium. Figure 1(a) shows the platform offers a decreasing privacy level, hitting zero in \( t = 5 \). Figure 1(b) shows that the equilibrium activity level first decreases but eventually approaches \( a_{max} = 2 \). The non-monotonicity of \( a_t^* \) contrasts with the case of a stationary privacy policy.\(^{24}\)

L.3 Non-monotonicity of \( \gamma_t \) in equilibrium

Figure 2 depicts another equilibrium dynamics for a myopic consumer. Figure 2(a) shows that \( \gamma_t \) can be non-monotone.

\(^{24}\)I have not managed to prove the general existence of such non-monotonicity. A numerical exercise suggests that the non-monotonicity of \( a_t \) occurs for a wide range of parameters \((v, \sigma_0^2)\) with a myopic consumer, when the equilibrium privacy level is strictly decreasing in early periods.
Figure 1(a): Privacy level $\gamma_t$

Figure 1(b): Activity level $a_t$

Figure 1: Equilibrium under $u(a) = 2a - \frac{1}{2}a^2$, $v = 10$, and $\sigma_0^2 = 1$.

Figure 2(a): Privacy level $\gamma_t$

Figure 2(b): Activity level $a_t$

Figure 2: Equilibrium under $A = \{0, 1, 2\}$, $u(1) = 10$, $u(2) = 11$, $v = 20$, and $\sigma_0^2 = 1$. 
M  Consumers with Heterogeneous Values of Privacy

The main insight does not depend on whether the platform knows $v$ at the outset. To see this, I consider the following model: There is a unit mass of myopic consumers. Each consumer $i \in [0, 1]$ has $v_i$, which is distributed according to a distribution with a finite support $V \subset \mathbb{R}_+$. Let $\alpha_v \in [0, 1]$ denote the mass of consumers with $v \in V$. Each consumer $i$ is privately informed of $v_i$, and the platform knows $V$ and $(\alpha_v)_{v \in V}$.

The game is a natural extension of the baseline model. Before $t = 1$, the monopoly platform chooses a privacy policy $(\gamma_t)_{t \in \mathbb{N}}$, which is common across all consumers. Then each consumer $i$ myopically chooses activity levels $(a_t(i))_{t \in \mathbb{N}}$. The types and signals are independent across consumers.

For each $i \in [0, 1]$, let $\sigma^2_t(i)$ denote the posterior variance for consumer $i$ at the end of period $t$. Then $i$’s payoff is $u(a_t(i)) - v_i[\sigma_0^2 - \sigma^2_t(i)]$, and the platform’s payoff is $\int_{i \in [0,1]} \sigma_0^2 - \sigma^2_t(v) di$. In equilibrium, consumers who have the same $v$ choose the same sequence of activity levels. As a result, we can write the platform’s profit as $\sum_{v \in V} \alpha_v [\sigma_0^2 - \sigma^2_t(v)]$, where $\sigma^2_t(v)$ is the posterior variance of consumers with $v$.

The platform faces a new trade-off: A high privacy level encourages consumers with high $v$ to choose positive activity levels. However, the platform obtains less information from consumers with low $v$, who would choose high activity levels without privacy protection. This static trade-off also creates a dynamic trade-off: For example, a more myopic platform may set a low privacy level to quickly collect data from consumers with low $v$, whereas a patient platform may set high privacy levels to collect information from all consumers over time.

However, there is no trade-off for the platform in the long run—i.e., all consumers eventually lose privacy and choose the highest activity levels.

**Proposition 8.** Let $(a^*_t(v), \sigma^2_t(v), \gamma^*_t)_{t \in \mathbb{N}, v \in V}$ denote the outcome of any equilibrium. Then,

$$\forall v \in V, \lim_{t \to \infty} (a^*_t(v), \sigma^2_t(v)) = (a_{\text{max}}, 0) \text{ and } \lim_{t \to \infty} \gamma^*_t = 0. \quad (49)$$

**Proof.** Take any equilibrium $(a^*_t(v), \sigma^2_t(v), \gamma^*_t)_{t \in \mathbb{N}, v \in V}$. For each $v \in V$, define $\sigma^2_\infty(v) := \lim_{t \to \infty} \sigma^2_t(v)$.

---

25 A similar trade-off arises in Lefouili and Toh (2019).
First, suppose, to the contrary, that there is some \( v^* \in V \) such that \( \sigma^2_\infty(v^*) > 0 \). Define

\[
\Delta_t := \frac{1}{1 - \delta_P} \sum_{v \in V} \alpha_v \left[ \sigma_0^2 - \sigma_\infty^2(v) \right] - \frac{1}{1 - \delta_P} \sum_{v \in V} \alpha_v \left[ \sigma_0^2 - \sigma_{t-1}^2(v) \right].
\]

(50)

It holds \( \lim_{t \to \infty} \Delta_t = 0 \). Now, take any \( \gamma^*_v \in \arg \min_{\gamma} \frac{1}{a^*(v^*, \gamma, \sigma_0^2)} + \gamma \). It holds that for any \( \sigma^2 \in [\sigma^2_\infty(v^*), \sigma_0^2] \),

\[
\sigma^2 - \frac{1}{\sigma^2} + \frac{1}{a^*(v^*, \gamma^*_v, \sigma_0^2) + \gamma^*_v} \geq \sigma^2 - \frac{1}{\sigma^2} + \frac{1}{a^*(v, \gamma^*_v, \sigma^2) + \gamma^*_v} \geq M := \min_{\sigma^2 \in [\sigma^2_\infty(v^*), \sigma_0^2]} \sigma^2 - \frac{1}{\sigma^2} + \frac{1}{a^*(v, \gamma^*_v, \sigma^2) + \gamma^*_v} > 0.
\]

The first inequality follows from \( a^*(v^*, \gamma, \sigma_0^2) \leq a^*(v, \gamma, \sigma^2) \) for \( \sigma^2 \leq \sigma_0^2 \). The last inequality holds because the minimand is continuous and positive on \([\sigma^2_\infty(v^*), \sigma_0^2]\). For a sufficiently large \( t \), we obtain \( \frac{\alpha_v M}{1 - \delta_P} > \Delta_t \), or equivalently,

\[
\frac{\alpha_v M}{1 - \delta_P} + \frac{1}{1 - \delta_P} \sum_{v \in V} \alpha_v \left[ \sigma_0^2 - \sigma_{t-1}^2(v) \right] > \frac{1}{1 - \delta_P} \sum_{v \in V} \alpha_v \left[ \sigma_0^2 - \sigma_\infty^2(v) \right].
\]

The left hand side is the lower bound of the time-\( t \) continuation value that the platform can get by deviating to the privacy level \( \gamma^*_v \) from time \( t \) on. The right hand side is the upper bound of the time-\( t \) continuation value without deviation. Thus, the platform is strictly better off by committing to a privacy policy that sets \( \gamma^*_v \) from time \( t \) on. This is a contradiction. \( \lim_{t \to \infty} a^*_t(v) = 0 \) and \( \lim_{t \to \infty} \gamma^*_t = 0 \) follow the proof of Theorem 1.

\[\square\]

# N General Payoffs of the Platform

Most of the results continue to hold if the platform’s final payoff from a sequence of posterior variances is \( \Pi((\sigma^2_t)_{t \in \mathbb{N}}) \), where \( \Pi : \mathbb{R}_+^\infty \to \mathbb{R} \) is bounded and coordinate-wise strictly decreasing. This generalization does not change the analysis, because in equilibrium a deviation by the platform increases \( \sigma^2_t \) for all \( t \in \mathbb{N} \).\(^{26}\) For example, suppose he platform sells information to a sequence of short-lived data buyers. Any information sold in period \( t \) is freely replicable later and thus has

\(^{26}\)The platform’s deviation may not uniformly increase posterior variances in Theorem 1. However, the proof of this theorem rests on the argument that if the equilibrium fails to meet certain conditions such as \( \sigma^2_t \to 0 \), the platform can deviate and uniformly decrease posterior variances. Thus, Theorem 1 continues to hold with the same proof under this general \( \Pi(\cdot) \).
a price of zero in any period \( s \geq t + 1 \). Then, the platform’s payoff in period \( t \) equals the value of information generated in period \( t \)—i.e., the platform’s ex ante payoff is \( \sum_{t=1}^{\infty} \delta_{t}^t (\sigma_{t-1}^2 - \sigma_t^2) \), which is decreasing in each \( \sigma_t^2 \).

### O The Case of Full Commitment

This appendix considers the platform with full commitment power: Before \( t = 1 \), it can publicly commit to a mapping \( \gamma(\cdot): \cup_{s=1}^{\infty} A^s \rightarrow \mathbb{R}_+ \), which maps past actions \((a_1, \ldots, a_{t-1}) \in A^{t-1}\) to the privacy level \( \gamma_t \) in period \( t \geq 2 \).

To provide a condition under which full commitment benefits the platform, we prepare some notations. First, take any equilibrium under long-run commitment. Let \((\hat{a}_t^2), (\hat{\gamma}_t^2), \) and \((\hat{\sigma}_t^2)\) denote the activity levels, privacy levels, and posterior variances at the equilibrium, respectively. Let \( \hat{U}_2(\sigma^2) \) denote the consumer’s continuation value starting from \( t = 2 \) when the posterior variance at the beginning of \( t = 2 \) is \( \sigma^2 \) and the consumer faces \((\hat{\gamma}_t)_{t \geq 2}\). Also, let \( U^0(\sigma^2) \) denote the consumer’s sum of discounted payoffs when the platform always set \( \gamma_t = 0 \) and the posterior variance is \( \sigma^2 \).

**Claim 2.** Suppose \( \hat{a}_1 < a_{\max} \). The platform’s payoff under full commitment is strictly greater than the one under long-run commitment if

\[
 u(a_{\max}) - v \left[ \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{a_{\max} + \hat{\gamma}_1} \right] + \delta_C \hat{U}_2 \left( \frac{1}{\sigma_0^2} + \frac{1}{a_{\max} + \hat{\gamma}_1} \right) \geq \max_{a \in A} \left\{ u(a) - v \left[ \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{a + \hat{\gamma}_1} \right] + \delta_C U^0 \left( \frac{1}{\sigma_0^2} + \frac{1}{a + \hat{\gamma}_1} \right) \right\}. \tag{51}
\]

\[
 u(a_{\max}) - v \left[ \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{a_{\max} + \hat{\gamma}_1} \right] + \delta_C \hat{U}_2 \left( \frac{1}{\sigma_0^2} + \frac{1}{a_{\max} + \hat{\gamma}_1} \right) \geq \max_{a \in A} \left\{ u(a) - v \left[ \sigma_0^2 - \frac{1}{\sigma_0^2} + \frac{1}{a + \hat{\gamma}_1} \right] + \delta_C U^0 \left( \frac{1}{\sigma_0^2} + \frac{1}{a + \hat{\gamma}_1} \right) \right\}. \tag{52}
\]

**Proof.** Given the deterministic policy \((\hat{\gamma}_t^2)\), under long-run commitment, we create an action-dependent policy that is strictly better for the platform. Consider the following policy \( \gamma^*(\cdot) \). If the consumer chooses \( a_1 \neq a_{\max} \) in \( t = 1 \), the platform sets \( \gamma_t = 0 \) in any period \( t \geq 2 \). If the consumer chooses \( a_{\max} \) in \( t = 1 \), the platform sets \( \hat{\gamma}_t \) in any period \( t \geq 2 \), i.e., it adopts a deterministic policy from \( t = 2 \) on. The left-hand side (51) is the consumer’s payoff when she chooses \( a_{\max} \) in \( t = 1 \) and behave optimally from \( t = 2 \) on. The right-hand side (52) is the consumer’s payoff from the best possible deviation in \( t = 1 \). Thus the display inequality means that the consumer
chooses $a_{max} > \hat{a}_1$ in $t = 1$. Note that the consumer’s behavior after $t = 2$ under $\gamma^*(\cdot)$ is different from that under long-run commitment. However, the consumer faces a lower posterior variance in $t = 2$ under the former. Proposition 5 implies that the consumer’s activity level under $\gamma^*(\cdot)$ is greater than the one under long-run commitment in any period $t \geq 2$. Thus, $\gamma^*(\cdot)$ gives the platform a higher payoff in any period than under long-run commitment.