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Abstract

A sender designs an experiment that generates a signal about an uncertain binary state,

and then interprets the realized signal. The receiver adopts the sender’s interpretation if

the signal is more likely under the proposed interpretation than under the true experiment.

Using a concavification approach, we characterize the sender’s optimal strategy to generate

and interpret signals. Strategic interpretation distorts the receiver’s action compared to a

Bayesian decision maker, but encourages the sender to choose a more informative exper-

iment ex ante. When the latter effect dominates, the receiver’s susceptibility to strategic

interpretation benefits both the sender and the receiver.
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1 Introduction

Suppose that a public health agency conducts an experiment on wearing masks, or a clinician

tests the effect of a medical intervention. The experiment shows a small or insignificant effect,

but the experimenter still wants to promote the result because, e.g., they want more people to

wear masks or adopt the medicine. To improve people’s assessment of the treatment, the agency

or the clinician could interpret the experimental result in a certain way. For example, they may

emphasize the effect on a subgroup of patients, or the significance of the effect instead of the

magnitude; if some results are insignificant, they may present a possible reason for which the

results are false negatives. In scientific communication, such a reporting strategy is called a

“spin” and is known to influence readers’ interpretation of the experimental treatment (e.g.,

Boutron et al. (2014)).

Motivated by these examples, we study the strategic (mis)interpretation of experimental

outcomes and its interaction with the design of an experiment. Specifically, we study a game

in which the sender designs and interprets information to persuade the receiver. Ex ante, the

sender chooses an experiment that generates a statistical signal about some binary state. After

a signal is realized, the sender provides an “interpretation” of the signal. An interpretation

is another Blackwell experiment, which maps each state to a distribution over signals. The

receiver adopts the proposed interpretation instead of the true experiment and updates his belief

accordingly, whenever the interpretation is a better fit, i.e., it makes the realized signal more

likely than the true experiment. Finally the receiver takes a payoff-relevant action. The sender

has a state-independent preference.

A key assumption of our model is that the receiver compares the true experiment to the

sender’s interpretation, and adopts the one that maximizes the likelihood of the realized sig-

nal. This assumption follows “model persuasion” in Schwartzstein and Sunderam (2021), and

captures various ideas about what people find compelling.1 A novelty of our model is that the

underlying signal structure is endogenous. Indeed, if strategic interpretation is absent—i.e., if

the receiver always updates beliefs according to the true experiment—our model reduces to a

version of Bayesian persuasion in Kamenica and Gentzkow (2011). Thus we combine model

persuasion and Bayesian persuasion to study how the design of information interacts with strate-

1See Schwartzstein and Sunderam (2021) and references therein.
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gic interpretation.

Our findings are two-fold. First, we characterize the sender’s optimal strategy using a ver-

sion of the concavification approach (Kamenica and Gentzkow, 2011). We cannot directly apply

the concavification method, because the receiver’s belief updating depends on the endogenous

interpretation and on the entire structure of the true experiment. However, we show that the

sender can focus on a simple class of experiments and interpretations to attain the optimal out-

come. We then show that the sender’s optimal outcome corresponds to the concavification of

the modified value function, where the modification captures how the sender’s strategic inter-

pretation distorts the receiver’s beliefs.

Second, strategic interpretation changes the welfare implication of persuasion in two ways.

On one hand, interpretation distorts the receiver’s posterior beliefs compared to the Bayesian

decision maker, and makes the receiver more likely to take a suboptimal action. This interpre-

tation effect captures the negative impact of interpretation on the receiver.

On the other hand, strategic interpretation affects the sender’s ex ante incentive to design

information, which we call the information effect. We show that the sender chooses a more

informative experiment (as the true experiment) in our model than in Bayesian persuasion. To

see the intuition, suppose that the sender wants to promote a new intervention and conducts

an experiment. If the experiment reveals that the intervention may not be effective, the sender

can come up with an interpretation of the result to convince the receiver that the false negative

is ex ante likely and the negative signal is not meaningful. Because such an interpretation

better fits the observation, the receiver will adopt it and dismiss the signal as an uninformative

one. Anticipating that strategic interpretation will mitigate the potential loss from unfavorable

experimental results, the sender generates more information ex ante.

The information effect improves the ex ante quality of information compared to Bayesian

persuasion, but the interpretation effect distorts the receiver’s belief. Depending on the players’

preferences, either effect can dominate. When the information effect dominates, the receiver’s

susceptibility to strategic interpretation increases the ex ante payoffs of both the sender and the

receiver compared to Bayesian persuasion.

Our paper relates to three strands of literature. First, it relates to the literature on Bayesian

persuasion, in particular the one in which the receiver is not a Bayesian decision maker. de Clip-

pel and Zhang (2020) study an information design problem in which the receiver’s belief-
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updating deviates from a rational Bayesian. In their model, the receiver updates beliefs accord-

ing to an exogenous rule. In our model whether the receiver’s inference deviates from Bayesian

depends on the sender’s interpretation strategy. Several papers, such as Lipnowski and Mathevet

(2018), Bloedel and Segal (2018), Galperti (2019), and Lipnowski et al. (2020), endogenize the

receiver’s belief-updating rule that deviates from the standard Bayesian persuasion. Beauchêne

et al. (2019) study a model in which the sender can propose multiple experiments, and an am-

biguity averse receiver adopts one of them to maximize the worst-case payoff. In contrast, the

receiver in our model chooses between adopting the true experiment and the proposed interpre-

tation to maximize the likelihood of the realized signal. The ex post manipulation of signals

arises also in Lipnowski et al. (2019).

Second, our work relates to papers that study scientific communication in models of strategic

information acquisition and communication. Di Tillio et al. (2017) study a model in which

the sender can manipulate experimental outcomes. The sender’s manipulation can benefit the

receiver, because manipulation behavior reveals the sender’s private information. We study a

new kind of manipulation, i.e., the strategic interpretation of outcomes, and its interaction with

information design. Libgober (forthcoming) studies a model in which the sender’s choice about

experiment is multi-dimensional, and examines the impact of transparency.

Finally, several papers model a sender’s attempt to interpret information. Aina (2021) stud-

ies model persuasion in which the sender commits to a set of experiments at the ex ante stage.

This paper assumes that a signal about the state is drawn from an exogenously given experiment.

In Eliaz et al. (2021), the sender sends a multi-dimensional message and provides a dictionary to

interpret it. We adopt a different way to model strategic interpretation, which could be relevant

to scientific communication.

2 The Model

We study strategic communication between a sender (she) and a receiver (he). The receiver has a

payoff function u(a, θ) that depends on his action a ∈ A and the binary state θ ∈ Θ := {θ0, θ1}.

The action space A is a compact subset of R and u(a, θ) is continuous in a. The sender’s payoff

v(a) depends only on the receiver’s action. We identify any µ ∈ ∆Θ with µ(θ1), the probability
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it places on θ1.2 Thus µ′ ∈ [0, 1] denotes the distribution over Θ that puts probability µ′ on θ1.

The common prior is µ0 ∈ (0, 1).

An experiment (S, π) is a pair of the space S of possible signals and a mapping π : Θ →

∆S. We write π(s|θ) for the probability of signal s ∈ S given a realized state θ ∈ Θ under

experiment π. Let Pr(s|π) :=
∑

θ∈Θ µ0(θ)π(s|θ) denote the ex ante probability that experiment

π draws signal s. Abusing notation, we write π(θ|s) := µ0(θ)π(s|θ)
Pr(s|π)

for the posterior probability

of state θ conditional on signal s given experiment π.

Let Π denote the set of the experiments the sender can use. The sender chooses from Π twice

in the game: In the first stage, the sender chooses from Π to generate a signal about the state.

In the second stage, the sender chooses from Π to provide the receiver with an interpretation of

the realized signal. For clarity, we call π ∈ Π an experiment when we refer to a generic element

of Π or the sender’s choice in the first stage. We also call π the true experiment to emphasize

that it is the sender’s choice in the first stage. We call π ∈ Π an interpretation for the sender’s

choice in the second stage. We restrict Π as follows:

Assumption 1 (No Relabeling). The set Π of feasible experiments is

Π = {(S, π) : S = {0, 1} and π(1|θ1) ≥ π(1|θ0)} . (2.1)

Any experiment π ∈ Π satisfies both π(1|θ1) ≥ π(1|θ0) and π(0|θ0) ≥ π(0|θ1). In terms of

the Bayesian posteriors that π induces, the assumption means that π belongs to Π if and only

if π(θ1|1) ≥ µ0 and π(θ0|0) ≥ 1 − µ0, i.e., signals 1 and 0 indicate that states θ1 and θ0 are

weakly more likely than at the prior, respectively. For example, θ1 means that a new treatment

is effective, and signal 1 or 0 is a positive or negative result, respectively. The assumption

means that after observing a positive result, a Bayesian believes that the treatment is (weakly)

more likely to be effective than at the prior. Generally, Assumption 1 represents a commonly

understood relation between the state and the statistical signal that the sender’s experiment can

generate. We believe that such a restriction is natural in the context of scientific communication.

The assumption also restricts the kinds of interpretation the sender can use to influence the

receiver’s beliefs.
2We have ∆X denotes the set of all probability distributions on set X .
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The timing of the game is as follows. First, the sender publicly chooses an experiment

π∗ ∈ Π. Nature draws state θ ∼ µ0 and signal s ∼ π∗(·|θ) ∈ ∆S. The state θ is unobservable,

but signal s is publicly observable. The sender then provides an interpretation πs ∈ Π of

signal s. The receiver adopts the proposed interpretation πs instead of the true experiment

π∗ if and only if πs renders signal s more likely than π∗ does: Formally, the receiver adopts

πs if and only if Pr(s|πs) ≥ Pr(s|π∗). Finally, the receiver updates his belief according to

the adopted interpretation, and then chooses an action: If the receiver adopts πs, he chooses

action as ∈ argmaxa
∑

θ πs(θ|s)u(a, θ); if the receiver adopts π∗, he chooses action as ∈

argmaxa
∑

θ π
∗(θ|s)u(a, θ). The receiver breaks ties in favor of the sender upon choosing an

action. The sender can choose any experiment from Π in the first and the second stages, and we

study the sender’s optimal persuasion strategy.

Definition 1. The sender’s optimal strategy consists of the true experiment π∗ ∈ Π and inter-

pretations (π0, π1) that maximize her expected payoff
∑

θ∈{θ0,θ1} µ0(θ)
∑

s∈{0,1} π
∗(s|θ)v(as),

where a0 and a1 are induced by the receiver’s optimal behavior described above.

2.1 The Role of Interpretation and Assumption 1

We illustrate how interpretation expands the set of outcomes the sender can achieve. We also

motivate Assumption 1 and explain how it restricts the attainable outcomes.

Suppose that the two states are equally likely, and the sender prefers the receiver to have a

larger µ = Pr(θ1) as a posterior belief. For example, the sender wants the receiver to choose a

higher action, and the receiver optimally chooses a higher action when he believes that state θ1

is more likely.

We make three observations. First, the sender can attain a weakly greater payoff than in

Bayesian persuasion. To see this, take any experiment π∗ ∈ Π and signal s. The sender can

induce the receiver to adopt π∗ as the interpretation by setting πs = π∗. The receiver’s posterior

after each signal s will be the Bayesian posterior calculated from π∗. Thus the sender in our

model can attain the same outcome as Bayesian persuasion. Note that Assumption 1 restricts

feasible experiments. However, in Bayesian persuasion with binary states, the sender has an

optimal policy that induces a two-point or degenerate distribution of posterior beliefs, and she
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can induce any such distribution under Assumption 1.3

Second, in some cases the sender prefers to distort the receiver’s posterior. Suppose that the

sender has chosen the fully informative experiment π∗, i.e., π∗(0|θ0) = π∗(1|θ1) = 1. Signal

0 leads to the Bayesian posterior µ = 0. If the sender wants the receiver to have a greater µ,

she can propose the uninformative experiment as an interpretation, i.e., π0 such that π0(0|θ0) =

π0(0|θ1) = 1. The receiver adopts π0 because it better fits the observation: Pr(0|π0) = 1 >

0.5 = Pr(0|π∗). Because the receiver updates his belief as if signal s = 0 is drawn from π0, his

posterior is 0.5. In contrast, if signal 1 is realized, the sender can induce the receiver to maintain

µ = 1. As a result, from the ex ante perspective, the receiver will hold subjective posterior 0.5

or 1 with equal probability, which cannot arise if the receiver were a Bayesian. In scientific

communication, interpretation π0 that follows s = 0 corresponds to a “spin,” i.e., a reporting

strategy that puts negative findings in a more palatable way to readers (Boutron et al., 2010).

For example, a researcher might downplay a negative result (signal 0) by arguing that a certain

aspect of the experiment renders the false negative likely.

Finally, there are some outcomes that the sender cannot attain. For example, suppose again

that the sender chooses the fully informative experiment π∗, and signal 0 is realized. Suppose

the sender tries to propose interpretation π0(0|θ0) = 2ε and π0(0|θ1) = 1. The ex ante like-

lihood of signal 0 under π0 is 0.5π0(0|θ1) + 0.5π0(0|θ0) = 0.5 + ε, which is strictly greater

than Pr(0|π∗) = 0.5. If the receiver adopts π0, he would hold posterior 0.5
0.5+ε

, which could be

arbitrarily close to 1 for a small ε. However, Assumption 1 prevents the sender from choosing

π0 as an interpretation, because π0 violates inequality (2.1). Intuitively, π0 reverses the mean-

ing of signals—e.g., it treats a negative signal, such as an insignificant result, as the indication

of a positive effect. Under Assumption 1 the receiver dismisses such an interpretation as un-

reasonable. In the example of a clinical intervention, the researcher might downplay negative

results, but it would be difficult to convince the audience that for some reason, a negative result

indicates a positive effect of the intervention.

3Take any two-point Bayes-plausible distribution of posteriors that induces µL < µ0 and µH > µ0. The sender
can induce it with π ∈ Π such that π(1|θ1) = µH

µ0

(
µ0−µL

µH−µL

)
and π(1|θ0) = 1−µH

1−µ0

(
µ0−µL

µH−µL

)
, which satisfies

Assumption 1.
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2.2 Discussion of Assumptions

Comparison to “Model Persuasion.” If we fix the true experiment π∗ and signal s, but allow the

sender to choose an interpretation, the model becomes “model persuasion” in Schwartzstein and

Sunderam (2021). In particular, we follow their paper and assume that the receiver adopts the

sender’s interpretation whenever it makes the realized outcome more likely than the chosen ex-

periment. The main difference between the two papers is that in our model, the experiment from

which the signal is drawn is endogenous and chosen by the sender. In terms of the receiver’s

belief formation, we assume that the receiver’s “default model” is equal to the true experiment.

The assumption implies that in the absence of strategic interpretation, the receiver interprets the

outcome of the chosen experiment as it is. This assumption on the default model is a tractable

way to connect the sender’s choice of the true experiment and the receiver’s default model.

A Model Without the No Relabeling Assumption. Assumption 1 is not only natural for our

intended applications, but also necessary to conduct a meaningful analysis. To see this, suppose

we drop the assumption and allow the sender to choose any experiment and interpretation with

a signal space {1, 2, . . . ,M} for a large M . Take any belief µ, and consider the following

M + 1 experiments: First, experiment π∅ draws one of the M signals uniformly randomly,

independently of θ. Second, for each m ∈ {1, ...,M}, experiment πµ,m draws signal m with the

ex ante probability of at least 1
M

, and following signal m, πµ,m induces posterior µ.4 Suppose

the sender chooses π∅ as the true experiment, and after each signal m, she chooses πµ,m as an

interpretation. After every signal m, the receiver adopts πµ,m and holds posterior µ. Thus the

sender can induce the receiver to have any posterior with the ex ante probability of 1.

3 The Sender’s Optimal Strategy

We characterize the sender’s optimal strategy and payoff. Let V (µ) denote the sender’s payoff

when the receiver has a (possibly non-Bayesian) posterior of µ and chooses an action optimally,

breaking ties in favor of the sender. Because the sender’s payoff is state-independent, V depends

only on the receiver’s posterior. Recall that µ ∈ [0, 1] denotes the distribution on Θ = {θ0, θ1}

4For example we can use M > max
θ∈Θ

µ(θ)

µ0(θ)
and πµ,m(m|θ) =

µ(θ)

µ0(θ)
·
[
max
θ∈Θ

µ(θ)

µ0(θ)

]−1

. Experiment πµ,m

induces posterior µ after signal m, and the ex ante probability of signal m is
[
max
θ∈Θ

µ(θ)

µ0(θ)

]−1

> 1
M .
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that puts probability µ on θ1.

Kamenica and Gentzkow (2011) use concavification to solve Bayesian persuasion. We may

think that the same approach works—i.e., we concavify V (g(µ′)), where g(µ′) is the receiver’s

subjective posterior conditional on the Bayesian posterior µ′ and the sender’s optimal interpre-

tation strategy. The approach does not work because g(µ′) is not well-defined: Whether the

receiver adopts the sender’s interpretation depends not on the Bayesian posterior µ′, but on the

likelihood of each signal under the true experiment π. Nonetheless, we provide an analogous

characterization result.

Definition 2. Given prior µ0, the µ0-monotone hull of V is defined as function V M such that

for all µ ∈ [0, 1],

V M(µ) := max
x∈[0,1]

V (x) subject to min {µ, µ0} ≤ x ≤ max {µ, µ0} .

Unlike the usual concavification, V M depends on prior µ0 (see Figure 1). On the interval

[µ0, 1], V M is the smallest (weakly) increasing function that is always above V . On the interval

[0, µ0], V M is the smallest (weakly) decreasing function that is always above V .

To see the intuition for V M , suppose that the sender chooses the true experiment that in-

duces posterior µL < µ0 with probability µH−µ0
µH−µL

(following signal 0) and posterior µH > µ0

with probability µ0−µL
µH−µL

(following signal 1). If the sender interprets signal 0 as it is, the re-

ceiver’s posterior is µL. However, for any µ ∈ [µL, µ0], the sender can interpret signal 0 by

proposing interpretation π0 that induces posterior µ with probability µH−µ0
µH−µ

(following signal 0)

and posterior µH with probability µ0−µ
µH−µ

(following signal 1). The receiver updates his beliefs

according to the proposed interpretation π0, because signal 0 is more likely under π0 than π,

i.e., µH−µ0
µH−µ

≥ µH−µ0
µH−µL

. Thus V M(µL) is a lower bound of the sender’s payoff given the Bayesian

posterior µL. The same argument holds for µH ≥ µ0. As a result, the sender’s expected payoff

is at least the concavification of V M evaluated at prior µ0.

The following result shows that the concavification of V M at µ0 is indeed the sender’s

optimal outcome. We say that the sender honestly interprets signal s if, after signal s is realized,

the sender proposes an interpretation that equals the true experiment.
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Proposition 1. The sender’s ex ante payoff at the optimal strategy is the concavification of the

µ0-monotone hull V M of V , evaluated at prior µ0. There is an optimal strategy that satisfies

one of the following:

1. The sender induces the receiver to maintain prior µ0 with probability 1.

2. The true experiment induces Bayesian posteriors 0 and µ ∈ (µ0, 1] after signals 0 and 1,

respectively, and the sender honestly interprets signal 1.

3. The true experiment induces Bayesian posteriors µ ∈ [0, µ0) and 1 after signals 0 and 1,

respectively, and the sender honestly interprets signal 0.

µ

Sender’s payoff

µ0

Optimal
payoff

Concavified V M

V M

V

µL µH

Figure 1: The Sender’s Optimal Payoff

Figure 1 illustrates Part 2 of the result. The black curve is the sender’s payoff V as a function

of the receiver’s posterior. The blue thick graph is the µ0-monotone hull of V , and the red-

dashed graph is the concavification of V M . The figure also shows the sender’s optimal strategy.

The concavification of V M splits prior µ0 into posteriors µ = 0 and µ = µH , which implies that

the sender chooses an experiment that induces 0 and µH . The sender honestly interprets signal

1 so that the receiver maintains µH . Following signal 0, which leads to the Bayesian posterior

0, the sender proposes an interpretation that induces posteriors µL and µH . The receiver adopts

the interpretation and holds posterior µL, because signal 0 is more likely under the proposed

interpretation. For example, the sender may say that the experiment has some problems and we

cannot interpret the negative signal (signal 0) to conclude that the state is 0 for sure.
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Figure 2 illustrates the sender’s optimal payoff in three more cases. The thick black lines

depict the sender’s value function V , and the red thick dashed lines depict the concavification of

V M . The left panel is a prosecutor-judge example of Kamenica and Gentzkow (2011) in which

the sender’s payoff is 0 if the receiver’s posterior is below 1/2 and is positive if it is above

1/2. The µ0-monotone hull coincides with the original value function, so the sender-optimal

outcome coincides with that of Bayesian persuasion.

In the middle panel, the sender’s payoff is a convex function of the receiver’s posterior, so

the solution of Bayesian persuasion is full disclosure. In our model the sender also chooses

a fully informative experiment. However, the sender now earns a strictly higher payoff than

in Bayesian persuasion because she can interpret signal 0 (that led to the Bayesian posterior

µ = 0) as a pure noise. To do so, the sender proposes an uninformative experiment that sends

signal 0 with probability 1 after every state.

In the right panel the sender’s payoff is strictly concave, so the Bayesian persuasion solu-

tion is no disclosure. In our setting the sender chooses a partially informative experiment that

generates Bayesian posteriors 0 and µH , following which she interprets µ = 0 as a pure noise.

The three panels show that the sender’s interpretation may divert the receiver’s posterior

away from the posterior of the Bayesian decision maker, but it also affects the sender’s choice

of the true experiment. The next section examines how the two channels affect the receiver’s

payoffs.

µ
0

Sender’s payoff

µ0

The jury problem
(Same as BP)

µ
µ0

Convex and increasing
(BP: full disclosure)

µ
µ0

Concave and increasing
(BP: no disclosure)

µH

Figure 2: Comparisons to Bayesian Persuasion (BP)
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4 The Interpretation and Information Effects

We examine how the sender’s strategic interpretation affects the receiver’s payoff compared to

Bayesian persuasion. Let µ̃BP denote the receiver’s posterior under the optimal experiment in

Bayesian persuasion. We view µ̃BP as a random variable from the ex ante perspective. Let

(µ̃T , µ̃R) denote the outcome of our model: µ̃T is the Bayesian posterior under the sender’s

true experiment, and µ̃R is the receiver’s posterior given the sender’s optimal interpretation. We

view (µ̃T , µ̃R) as a joint random variable.

Let U(µ, µ′) denote the receiver’s interim payoff when the true posterior is µ but he acts

optimally based on posterior µ′.5 We use E[·] as the expectation with respect to the random

posteriors µ̃BP or (µ̃T , µ̃R). We can decompose the receiver’s gain from the sender’s strategic

interpretation as follows:

E[U(µ̃T , µ̃R)]− E[U(µ̃BP , µ̃BP )]

= E[U(µ̃T , µ̃R)]− E[U(µ̃T , µ̃T )]︸ ︷︷ ︸
Interpretation Effect

+ E[U(µ̃T , µ̃T )]− E[U(µ̃BP , µ̃BP )]︸ ︷︷ ︸
Information Effect

.

The first term, which we call the interpretation effect, captures the downside of strategic inter-

pretation. Given a chosen experiment, the sender’s interpretation distorts the receiver’s posterior

and makes it more likely that he takes a suboptimal action. The second term, which we call the

information effect, captures the effect of strategic interpretation on the ex ante choice of exper-

iment: Anticipating that the sender can influence the receiver’s posterior via interpretation, the

sender may choose an experiment that is different from Bayesian persuasion. The following

result shows that the interpretation effect is non-positive, but the information effect is non-

negative—i.e., the sender who can strategically interpret signals chooses a more informative

experiment in the ex ante stage.

Proposition 2. The interpretation effect is non-positive. In contrast, the information effect is

non-negative. Specifically, for any solution of Bayesian persuasion, we can find an experiment

that is a part of the sender’s optimal strategy and is weakly more (Blackwell) informative than

the Bayesian persuasion solution.

5Formally, let a(µ′) denote the receiver’s chosen action when his posterior is µ′. We have U(µ, µ′) =
∑
θ µ(θ)·

u(a(µ′), θ).
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0
µ

V (µ)

µ0

Our model (dashed)
Bayesian persuasion

µL

1
2

1

Figure 3: Sender’s payoffs

0
µ

U(µ)

µ0

Bayesian persuasion
Our model (dashed)

3
4

µ′L
µL 1

Figure 4: Receiver’s payoffs

The positive information effect clarifies how the sender’s ability to interpret signals affects

her incentive to design information. Upon choosing the true experiment, the sender balances the

benefit of drawing a favorable signal and the cost of drawing an unfavorable signal. Strategic

interpretation enables the sender to mitigate the loss from an unfavorable signal. As a result,

the sender is willing to induce a more dispersed distribution of Bayesian posterior beliefs, that

is, the sender prefers a more informative experiment in our model than in Bayesian persuasion.

The interpretation effect harms the receiver, and the information effect benefits the receiver.

The following example shows that either effect can dominate. Suppose µ0 = 1
2

and A = [0, 1].

The receiver’s payoff is 1 − (a − θ)2, so he optimally chooses a = µ at posterior µ = Pr(θ1).

The sender’s payoff V (µ), as a function of the receiver’s posterior µ, is piece-wise linear and

connects (0, 0), (µL, 0.49), (0.5, 0.5), and (1, 1), where µL < 0.49. The black solid line in

Figure 3 depicts V .

The solution of Bayesian persuasion follows from the concavification of V (the thick light

blue line in Figure 3). The sender induces posteriors µL and 1. When the receiver has a Bayesian

posterior of µ, his payoff is U(µ) = 1− [(1− µ) · (µ− 0)2 + µ · (µ− 1)2], as depicted by the

black line in Figure 4. The receiver’s payoff under Bayesian persuasion is the value of the light

blue line that connects U(µL) and U(1), evaluated at µ0.

In our model the sender chooses a fully informative experiment, which induces a Bayesian

posterior 0 or 1 after signal 0 or 1, respectively. Ex post when signal 0 is realized, the sender

interprets it as a pure noise, inducing the receiver to maintain prior µ0. As a result the sender’s
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interpretation induces the receiver to have a posterior of 1
2

or 1 with equal probability. Hence

when the true posterior is 0, the receiver takes a = 1
2
, and her actual payoff 1 − (0 − 1

2
)2 =

3
4
. When the true posterior is 1, the receiver takes a = 1 and obtains a payoff of 1. The

receiver’s payoff is thus the line that connects (0, 3
4
) and (1, 1) evaluated at µ0. Figure 4 shows

the receiver’s payoff as the average of 3
4

and 1, which is the value of the red dashed line at µ0.

Depending on µL, strategic interpretation can benefit or hurt the receiver. The magnitude of

the interpretation effect is large if µL is close to 0, because the receiver’s distorted belief µ0 is

further away from the Bayesian posterior µL. Indeed in Figure 4 the red line (i.e, the receiver’s

payoff in our model) is independent of µL, but the blue line (i.e., the receiver’s payoff under

Bayesian persuasion) gets flatter as µL goes to 0. In particular if we replace µL with µ′L where

µ′L is close to µ0, then the receiver’s payoff is lower in Bayesian persuasion. Thus the receiver

benefits from the sender’s strategic interpretation if and only if µL is close enough to µ0.

5 Extensions

5.1 Persuading the Public via Strategic Interpretation

This section considers a sender interested in persuading a population of receivers. We provide

a simple condition under which the information effect dominates the interpretation effect. The

sender could be a public agency trying to encourage people to take some private costly ac-

tion, such as wearing a mask. To persuade the receivers, the agency conducts an experiment,

interprets the result, and then issues a public report.

We modify our model as follows. The sender faces a unit mass of receivers. Each receiver

i ∈ [0, 1] cares only about his action, ai ∈ {0, 1}. Receiver i’s payoff is ai(θ − ci), where

the state θ ∈ {0, 1} is binary and the cost ci of taking ai = 1 is distributed across receivers

according to some cumulative distribution function F that has a positive density f on its support

[0, 1]. Given the receivers’ (common) posterior µ ∈ [0, 1] on θ = 1, the mass of receivers who

take ai = 1 is F (µ). The sender publicly chooses an experiment and interprets the realized

signal to maximize her payoff, which is the mass of receivers who choose ai = 1.

Suppose that the true posterior is µ, but the receivers have posterior µ′. The sender’s payoff

is F (µ′). The receivers’ welfare, which is defined as the average payoff of all receivers, is
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F (µ′)[µ− EF (c|c ≤ µ′)], because receiver i chooses ai = 1 whenever ci ≤ µ′.

Proposition 3. If F is strictly concave, the sender’s payoff and the receivers’ welfare are strictly

higher in our model than in Bayesian persuasion. If F is strictly convex, the sender’s payoff

is strictly greater, but the receivers’ welfare is strictly lower in our model than in Bayesian

persuasion.

If the Bayesian persuasion solution is full disclosure, the information effect is zero, so the

receivers are worse off when the sender can interpret signals. In contrast, if the Bayesian per-

suasion solution is no disclosure, the information can be positive. The result shows that the

information effect is indeed positive and dominates the interpretation effect for a concave F .

5.2 Negative Information Effect for a General State Space

We extend the model to accommodate a general state space and then show that the information

effect can be negative. The receiver’s payoff u(a, θ) depends on his action a ∈ A and the state

θ ∈ Θ, where Θ is finite. The sender’s payoff v(a) depends only on the receiver’s action. They

share a common prior µ0 ∈ ∆Θ with full support. Let Π denote the set of all experiments the

sender can use. We extend Assumption 1 as follows.

Assumption 2. The set Π of feasible experiments is

Π =
{

(S, π) : S = {sθ}θ∈Θ and ∀θ, θ′ ∈ Θ, π(sθ|θ) ≥ π(sθ|θ′)
}
. (5.1)

The assumption generalizes Assumption 1. Figure 5 considers Θ = {θ1, θ2, θ3} and shows

the set of feasible experiments in terms of the posteriors each signal can induce. The triangle

represents the belief space. The right and top vertices represent degenerate beliefs Pr(θ1) = 1

and Pr(θ2) = 1, respectively. The dashed lines partition the triangle into three areas. Assump-

tion 2 means that the sender can choose an experiment π if and only if posterior π(·|sθ1) is in

the right bottom (gray) area, π(·|sθ2) is in the top area, and π(·|sθ3) is in the left bottom area.

The timing of the game is the same as before. First, the sender publicly chooses an exper-

iment π∗ ∈ Π. Nature draws a state θ ∼ µ0 and a signal s ∼ π∗(·|θ) ∈ ∆S. The sender
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then provides an interpretation πs ∈ Π of signal s. The receiver adopts interpretation πs if and

only if the ex ante probability of s is greater under πs than π∗. The receiver updates his belief

according to the adopted interpretation, and then chooses an action, breaking ties in favor of the

sender.

The following example shows that under a general state space, the sender in our model

may choose the true experiment that is less informative than in Bayesian persuasion. Thus

Proposition 2 may not hold for a general state space.

Example 1. Suppose Θ = {θ1, θ2, θ3} and µ0 = (1/3, 1/3, 1/3). We construct V (µ) in Figure

5. Let ε be a small positive number. The three vertices have values V (1, 0, 0) = ε, V (0, 1, 0) =

100+ε, and V (0, 0, 1) = 98+ε. The midpoints of the three edges have values V (1/2, 0, 1/2) =

49, V (1/2, 1/2, 0) = 50, and V (0, 1/2, 1/2) = 99. We also have V (µ0) = 66. Define function

V (·) as the lower convex hull of the given points. Function V is linear within each of the three

quadrilaterals of Figure 5. If ε = 0, then V is linear in its entire domain, but if ε > 0, then V is

convex.

49

99 50
µ0

V (1, 0, 0) = ε

V (0, 1, 0) = 100 + ε

V (0, 0, 1) = 98 + ε

66

Figure 5: A Convex Payoff Function with Three States: The triangle represents the belief space,
and the value at each vertex and midpoint is the sender’s payoff. The lines that connect µ0 and
the midpoints delineate the set of posteriors that each signal can induce under Assumption 2,
e.g, the gray area is the posteriors that signal sθ1 can induce across all π ∈ Π.

Because V (·) is convex, the sender chooses the fully informative experiment in Bayesian

persuasion. We show that the sender in our model does not choose the fully informative ex-

periment as the true experiment. The fully informative experiment induces posteriors (1, 0, 0),
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(0, 1, 0), or (0, 0, 1) with equal probability. Thus the sender’s payoff following the optimal

interpretation is at most
1

3
· 66 +

1

3
· (100 + ε) +

1

3
· 99. (5.2)

For example, if signal sθ1 is realized, any posterior the sender can induce via interpretation

belongs to the gray area in Figure 5. Thus 66 is the maximum payoff given sθ1 . In contrast,

suppose that the sender chooses experiment π∗ such that π∗(sθ2|θ2) = 1 and π∗(sθ3 |θ1) =

π∗(sθ3 |θ3) = 1. This experiment induces (Bayesian) posterior (0, 1, 0) with probability 1/3, and

posterior (1/2, 0, 1/2) with probability 2/3. The sender can then interpret signal sθ3 according

to π3 such that π3(sθ3|θ2) = π3(sθ3|θ3) = 1, and π3(sθ3|θ1) = 0. The receiver adopts π3 and

interprets sθ3 according to π3. As a result, the receiver’s posterior becomes (0, 1/2, 1/2). Thus

the sender’s optimal payoff is at least

1

3
· (100 + ε) +

2

3
· 99,

which is strictly larger than (5.2), the best payoff conditional on choosing the fully informative

experiment.

This example shows that even if the sender’s payoff is convex, the true experiment could

differ from full disclosure. Therefore the sender may choose a less informative experiment than

in Bayesian persuasion when |Θ| > 2, i.e., the information effect can be negative. The key

driver is that the sender’s payoff from state θ1 is small (V (1, 0, 0) = ε), so the true experiment

pools states θ1 and θ3 together. By pooling them, the sender can “better” interpret signal sθ3 .

6 Conclusion

We study a model in which the sender designs an experiment that generates a signal and then

provides an interpretation of the realized signal. Strategic interpretation distorts the receiver’s

belief, but encourages the sender to generate more information ex ante. Under binary states,

strategic interpretation could benefit both the sender and the receiver by improving the quality

of information generated. A natural future direction is to allow an arbitrary state space and

examine the potential tension between the information and interpretation effects generally.
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Appendix

A Proof of Proposition 1

Proof. The proof of the first part consists of three steps. First, if the sender’s experiment draws

signal s and induces Bayesian posterior µ, the sender can interpret signal s to induce the receiver

to hold any posterior µR ∈ [min {µ0, µ} ,max {µ0, µ}]. To see this, take any experiment π that

induces Bayesian posteriors µ′ < µ0 and µ > µ0 following s = 0 and s = 1, respectively.

The ex ante probability of signal 1 is Pr(1|π) = µ0−µ′
µ−µ′ . Following signal 1, suppose the sender

proposes an interpretation that induces posteriors µ′ and µR ∈ [µ0, µ], respectively. The ex ante

probability of µR is µ0−µ′
µR−µ′ > Pr(1|π), so the receiver adopts the interpretation and has posterior

µR. The same argument applies to any µR ∈ [µ′, µ0].

Second, the sender can attain her optimal payoff with a strategy such that her interpreta-

tion moves the receiver’s posterior toward the prior, compared to the Bayesian posterior. The

statement holds when the sender chooses the true experiment that discloses no information or

full information. Suppose the sender chooses experiment π that induces posteriors µ′ < µ0 and

µ > µ0. Without loss of generality, suppose µ−µ0
µ−µ′ > 1−µ0. Consider another experiment π̂ that

induces posteriors y < µ′ and 1 such that 1−µ0
1−y = µ−µ0

µ−µ′ , or equivalently, y = 1 − (1−µ0)(µ−µ′)
µ−µ0 .

We have y > 0 because it reduces to µ−µ0
µ−µ′ > 1 − µ0. Experiments π and π̂ have the identical

ex ante probability of each signal s ∈ {0, 1}. Thus the set of possible posteriors the sender

can induce is the same between π and π̂. We now consider the sender’s optimal interpretation

under π̂. We show that the sender’s interpretation can only move the receiver’s posterior toward

the prior. The statement trivially holds when π̂ induces posterior 1. The statement also holds
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following posterior y: The maximum ex ante probability for posterior x < y (across all fea-

sible experiments) is 1−µ0
1−x < Pr(y|π̂) = 1−µ0

1−y , and thus the sender cannot induce x following

Bayesian posterior y. To sum up, even if the sender can only use interpretations that move

Bayesian posteriors toward the prior, her optimal payoff remains the same.

Third, we show that the sender’s optimal payoff comes from the concavification of the

µ0-monotone hull of V . Suppose the sender can only use interpretations that move Bayesian

posteriors toward the prior. The first step implies that the sender can indeed attain any posterior

between the prior and the Bayesian posterior. Thus given Bayesian posterior µ, the sender’s

optimal payoff in such a situation is V M(µ). The sender can choose an experiment to induce

any Bayes-plausible distribution of Bayesian posteriors (with at most two posteriors). Therefore

the sender’s optimal payoff is the concavification of V M evaluated at µ0.

We now prove the second part. Take any optimal strategy of the sender. Suppose that the as-

sociated experiment induces Bayesian posteriors µ− ≤ µ0 and µ+ ≥ µ0. If µ− = µ+ = µ0, Part

1 holds. Suppose µ− < µ0 and µ+ > µ0. Assume V M(µ−) ≤ V M(µ+). Suppose that the sender

instead chooses an experiment with Bayesian posteriors 0 and µ+. We have V M(0) ≥ V M(µ−),

and the new strategy increases the probability of attaining V M(µ+). Thus the sender can

also attain her optimal payoff with the new strategy. We now consider the sender’s optimal

interpretation having induced Bayesian posteriors 0 and µ+. Suppose to the contrary that

V M(µ+) > V (µ+), that is, the sender interprets posterior µ+ to distort the receiver’s belief.

It implies that there is some µ∗ ∈ [µ0, µ
+) such that V (µ∗) = V M(µ+). The sender could

then induce Bayesian posteriors 0 and µ∗ to attain payoffs V M(0) and V (µ∗) = V M(µ+) so

that the probability of V M(µ+) is now µ0
µ∗

> µ0
µ+

. This is a contradiction, and thus the sender

honestly inteprets signal 1 (that leads to posterior µ+), i.e., Part 2 holds. Symmetrically, if

V M(µ−) ≥ V M(µ+), Part 3 holds.

B Proof of Proposition 2

Proof. For any posteriors µ and µ′, we have U(µ, µ′) ≤ U(µ, µ). Letting (µ, µ′) = (µ̃T , µ̃R)

and taking expectation, we obtain E[U(µ̃T , µ̃R)] − E[U(µ̃T , µ̃T )] ≤ 0, i.e., the interpretation

effect is non-positive.

Next, we show that the sender in our model chooses a more informative experiment as the
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true experiment than in Bayesian persuasion. The statement holds if the solution of Bayesian

persuasion is to provide no information. Suppose that a solution of Bayesian persuasion induces

posteriors µ− < µ0 and µ+ > µ0. We consider two cases. First, suppose there is an optimal

strategy in our model such that the receiver’s belief equals µ0 with probability 1. The sender

can implement such an outcome by choosing a fully informative experiment and interpreting

signals so that the receiver has posterior µ0 with probability 1. The fully informative experiment

is a part of the sender’s optimal strategy and is more informative than any solution of Bayesian

persuasion.

Second, suppose there is no optimal strategy such that the receiver’s belief equals µ0 with

probability 1. Then either Part 2 or Part 3 of Proposition 1 holds. Without loss of generality,

suppose that Part 2 holds. That is, there is an optimal strategy such that the true experiment

induces Bayesian posteriors 0 and µ ∈ (µ0, 1], and the sender honestly interprets signal 1,

which induces µ. Suppose that µ ∈ (µ0, µ
+). We construct another optimal strategy of the

sender such that the true experiment is weakly more informative than the solution to Bayesian

persuasion. First, we have

µ− µ−

µ
V M(0) +

µ−

µ
V M(µ) ≥ V M(µ−) ≥ V (µ−). (6.1)

The first inequality holds; otherwise the concavification of V M would include µ−, which means

that the sender would strictly prefer to induce Bayesian posteriors µ− and µ, instead of 0 and µ.

Second, we have

µ+ − µ
µ+ − µ−

V (µ−) +
µ− µ−

µ+ − µ−
V (µ+) ≥ V (µ) = V M(µ). (6.2)

The first inequality holds; otherwise the concavification of V would include µ. The equality

holds because the sender honestly interprets signal 1, which leads to Bayesian posterior µ. We

can write inequality (6.2) as

V (µ−) ≥ µ+ − µ−

µ+ − µ
V M(µ)− µ− µ−

µ+ − µ
V (µ+). (6.3)
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Inequalities (6.1) and (6.3) imply

µ− µ−

µ
V M(0) +

µ−

µ
V M(µ) ≥ µ+ − µ−

µ+ − µ
V M(µ)− µ− µ−

µ+ − µ
V (µ+).

Rearranging this, we have

µ+ − µ
µ+

V M(0) +
µ

µ+
V (µ+) ≥ V M(µ).

Finally, multiply both sides by µ0
µ

and rearrange the terms:

µ+ − µ0

µ+
V M(0) +

µ0

µ+
V (µ+) ≥ µ− µ0

µ
V M(0) +

µ0

µ
V M(µ).

Because the right-hand side is the sender’s optimal payoff, this inequality implies that it is also

optimal for the sender to induce Bayesian posteriors 0 (after signal 0) and µ+ (after signal 1 and

honestly interpret signal 1. Under such a strategy, the true experiment is more informative than

the solution of Bayesian persuasion. Therefore the information effect is non-negative.

C Proof of Proposition 3

Proof. Suppose F is strictly concave, so that Bayesian persuasion leads to no disclosure. As

the right panel of Figure 2 shows, in our model, the sender chooses the true experiment that

induces Bayesian posteriors µH (after signal 1) and 0 (after signal 0) with probabilities µ0
µH

and
µH−µ0
µH

, respectively. The sender honestly interprets signal 1, but interprets signal 0 to induce

subjective posterior µ0 as opposed to 0. As a result we can write the receiver’s ex ante expected

payoff as

µ0

µH
F (µH)[µH − E(c|c ≤ µH)] +

(
1− µ0

µH

)
F (µ0)[−E(c|c ≤ µ0)].
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We show this expression is greater than the receiver’s payoff under Bayesian persuasion, which

is F (µ0)[µ0 − E(c|c ≤ µ0)]. We obtain

µ0

µH
F (µH)[µH − E(c|c ≤ µH)] +

(
1− µ0

µH

)
F (µ0)[−E(c|c ≤ µ0)] > F (µ0)[µ0 − E(c|c ≤ µ0)]

⇐⇒ µ0

µH
F (µH)[µH − E(c|c ≤ µH)]− µ0

µH
F (µ0)[−E(c|c ≤ µ0)] > F (µ0)µ0

⇐⇒ µ0

µH
F (µH)[µH − E(c|c ≤ µH)]− µ0

µH
F (µ0)[µH − E(c|c ≤ µ0)] > 0

⇐⇒ F (µH)[µH − E(c|c ≤ µH)]− F (µ0)[µH − E(c|c ≤ µ0)] > 0.

Function h(x) = F (x)[µH − E(c|c ≤ x)] is strictly increasing in x < µH , because we have

h′(x) = µHf(x)− xf(x) > 0 for any x < µH . As a result, the above sequence of inequalities

holds. Therefore the receiver is strictly better off when the sender strategically interprets the

signals.

If F is strictly convex, the sender discloses full information under Bayesian persuasion. In

our model the sender chooses the fully informative experiment as the true experiment, but she

interprets signal 0 to make the receivers believe that the posterior is µ = µ0 instead of µ = 0.

On this event, the receiver is strictly worse off. Thus the receivers’ welfare is strictly lower in

our model than in Bayesian persuasion.
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