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Abstract

An algorithm recommends a product to a buyer based on the product’s value

to the buyer and its price. We characterize an algorithm that maximizes the

buyer’s expected payoff and show that it strategically biases recommendations

to incentivize lower prices. Under optimal algorithmic consumption, informing a

seller about the buyer’s value does not affect the buyer’s expected payoff but leads

to a more equitable distribution of payoffs across different values. These results

extend to Pareto-optimal algorithms and multiseller markets.

∗Ichihashi: Queen’s University, Department of Economics, shotaichihashi@gmail.com.

Smolin: Toulouse School of Economics, University of Toulouse Capitole and CEPR,

alexey.v.smolin@gmail.com. We would like to thank Nemanja Antic, Heski Bar-Isaac, Piero Gottardi,

Emir Kamenica, Caio Lorecchio, Matthew Mitchell, and Alessandro Pavan, as well as the audiences

at multiple venues, for the valuable suggestions and discussions. The authors acknowledge support

from the Economics of Digital Services initiative at the University of Pennsylvania and from the NET

Institute. Smolin acknowledges funding from the French National Research Agency (ANR) under the

Investments for the Future (Investissements d’Avenir) program (grant ANR-17-EURE-0010). Javier

Gonzalez-Morin provided excellent research assistance.

mailto:shotaichihashi@gmail.com
mailto:alexey.v.smolin@gmail.com


1 Introduction

Algorithmic decision-making is rapidly spreading in the modern economy, fueled by

advancements in information technology and artificial intelligence. Algorithms make

recommendations for bail (Angwin et al., 2016), health (Obermeyer et al., 2019), and

lending (Jagtiani and Lemieux, 2019). Algorithms negotiate with suppliers (Van Hoek

and Lacity, 2023) and bid in online advertising auctions (Balseiro et al., 2021). Further-

more, consistent with the predictions of Gal and Elkin-Koren (2016), algorithmic con-

sumption, or “intelligent consumption,” is proliferating, as evidenced by robo-advisors

that propose financial securities, smart devices that control electricity use, price-trackers

that seek and pinpoint lower-priced products, and large language model-driven chatbots

that evaluate and recommend alternative purchasing options.

In this paper, we study how algorithmic consumption may affect markets and re-

distribute welfare, building on its three salient features: First, algorithms operate au-

tonomously in a preprogrammed manner; second, algorithms can uncover information

about product existence, value, and price; and third, algorithms impact the prices strate-

gically chosen by sellers.

We first develop a baseline setting of bilateral trade. A buyer and a seller can trade a

single product, with the trade cost and trade value being uncertain. The seller privately

knows the cost, which constitutes her type. The buyer knows neither the value nor

the existence of the product. An algorithm can discover the value and recommend the

product based on the value and price posted by the seller. If recommended, the buyer

forms a Bayesian value estimate and decides whether to purchase the product at the

posted price; if not recommended, trade does not occur. The seller knows the design of

the algorithm and sets a price to maximize her profit.

In this setting, we first characterize a buyer-optimal algorithm, i.e., an algorithm

that maximizes the buyer’s expected payoff. Such an algorithm should, on the one

hand, incentivize the seller to lower the price by rewarding lower prices with more

frequent recommendations, and on the other hand, it should strive to realize the benefits

of a trade. We show that this trade-off is optimally resolved by an algorithm that
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recommends the product if its pseudo value rather than if its true value is above the

price, and we fully characterize the resulting equilibrium (Proposition 1).

The characterization reveals two important features. First, while the algorithm and

the equilibrium prices depend on both the cost and value distributions, the equilibrium

product allocation depends only on the cost distribution. Second, the algorithm is biased

relative to the ex post optimal algorithm: At high prices, the buyer-optimal algorithm

does not recommend the product even when the value exceeds the price; at low prices,

the algorithm recommends the product even when the value is below the price.1 These

ex post mistakes render the buyer’s demand more price elastic and incentivize the seller

to lower prices across different costs.

This characterization enables us to show that algorithmic consumption drastically

changes the welfare implications of third-degree price discrimination. To address this,

we modify the baseline model by allowing the seller to distinguish between different

buyer segments and set different prices for them. We show that as long as the algorithm

optimally adapts to market segmentation, the market segmentation is neutral in that

it does not affect the buyer’s total surplus, seller’s profit, or the product allocation

(Proposition 2). At the same time, we show that finer market segmentation results

in a mean-preserving spread of prices and, within a class of monotone segmentations,

in a mean-preserving contraction of surplus across different values (Proposition 3).2

Intuitively, informing the seller about the buyer’s value incentivizes the seller to set lower

prices for low-value consumers and higher prices for high-value consumers, resulting in

more dispersed prices and less dispersed consumer surplus.

In Section 5, we extend the baseline analysis in several dimensions. First, we show

that the algorithm characterization and market segmentation results extend beyond

buyer-optimal algorithms to any Pareto-optimal algorithm by simply incorporating the

Pareto weights into the formulation of a pseudo value. Second, we demonstrate that

1This finding highlights the importance of the strategic context for an algorithm assessment and AI
regulation (cf. White House (2023); European Commission (2024)).

2This finding suggests that promoting algorithmic consumption may be a powerful consumer pro-
tection policy, complementary to the existing regulatory methods (cf. Scott Morton et al. (2019)).
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the algorithm characterization and most of the market segmentation results extend to

settings with multiple competing sellers. Notably, this includes market segmentation

neutrality: Despite strategic competition among sellers, the specifics of market segmen-

tation do not affect the total buyer surplus or seller profits. Third, we expand our

analysis by allowing the buyer to be informed in advance about either the product’s

existence or its value, show how this information can potentially harm the buyer, and

discuss how algorithm design can mitigate this harm.

Related literature.— Our paper contributes to the recent and rapidly growing literature

on the economics of algorithmic decisions. The large focus of this literature has been

on algorithmic pricing in competitive settings, either empirically (Calvano et al. (2020),

Asker et al. (2022), Assad et al. (2024)), theoretically (Salcedo (2015), Lamba and Zhuk

(2023)), or both (Brown and MacKay (2023), Johnson et al. (2023)). This literature

largely investigates whether and how algorithms can empower sellers by increasing their

collusion opportunities. We complement this literature by examining the other side of

the market and asking whether and how algorithms can empower buyers.

Specifically, we show that algorithmic consumption can deliver countervailing power

in the spirit of Galbraith (1952) to buyers by giving them a stronger bargaining position

vis-a-vis sellers.3 In fact, out setting can be viewed as enabling a buyer from the classic

setting of Myerson and Satterthwaite (1983) to commit to values and prices at which she

would be purchasing a product. In this sense, we proceed in the opposite direction from

the literature on limited commitment, which investigates how the inability to commit,

typically on the part of a seller or a mechanism designer, affects equilibrium trade

outcomes (e.g., Mylovanov and Tröger (2014), Liu et al. (2019)).

Methodologically, our paper belongs to the recent strand of economic literature that

examines methods of empowering buyers in monopolistic settings via information con-

trol. Roesler and Szentes (2017) analyze buyer-optimal learning in a bilateral trade

setting. Like us, they show that the buyer benefits from ex post imperfect decisions

3Thus, algorithmic consumption can be viewed as an effective alternative to the joint use of an
intermediary (see Decarolis and Rovigatti (2021) for online advertising) or to a merger (see Loertscher
and Marx (2022) for multifirm bargaining).
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to influence the seller’s pricing; that is, full learning about the value is not optimal.

Unlike us, they require learning to occur before the price is set, which limits its impact

(Section 5.3).4 Deb and Roesler (forth.) extend this analysis to the case of a multiprod-

uct monopoly and Bergemann et al. (2023) to auctions; Condorelli and Szentes (2020)

analyze the buyer-optimal distribution of values within a given interval. We contribute

to this literature by allowing the buyer’s information to depend on the price and by

accounting for seller heterogeneity.5

Finally, our analysis offers a novel perspective on the classic question of the impact

of price discrimination based on consumer information, as studied in the market seg-

mentation literature (e.g., Bergemann et al. (2015), Yang (2022), Haghpanah and Siegel

(2023)). We show that consumer use of algorithms may introduce a new welfare im-

plication whereby price discrimination results in a more equal distribution of consumer

surplus without affecting average welfare outcomes. This finding also contributes to the

recent literature that explores ways to promote equality and fairness through mecha-

nism design (Kleinberg et al. (2018), Dworczak et al. (2021), Akbarpour et al. (2024))

or information design (Doval and Smolin (2024)).

2 Baseline Model

There is a buyer and a seller. The seller can produce one unit of a product at cost c,

which is her private type. The type distribution F has support [0, 1], positive density

f , and a continuous and strictly increasing virtual cost function, Γ(c) ≜ c + F (c)/f(c).

The value of the product to the buyer is v ∼ G and is independent of the seller’s type.

The value distribution G has positive density g over its support [0, 1].

The buyer initially knows neither the existence nor the value of the product. How-

4The dependence of information on price may also arise from a worst-case analysis, as in the work
of Libgober and Mu (2021), in which the buyer’s information is chosen to minimize the seller’s profits.

5Thus, we combine the machinery of Bayesian persuasion (e.g., Kamenica and Gentzkow (2011))
with that of mechanism design (e.g., Baron and Myerson (1982)). Several other papers have combined
these machineries in trade settings, typically to study revenue maximization, including most recently
Lee (2021), Bergemann et al. (2022), Yang (2022), and Smolin (2023).
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ever, a recommendation algorithm or simply algorithm provides the buyer with this

information. The algorithm is characterized by a function r : [0, 1] × R+ → [0, 1] such

that for any pair (v, p) of a realized value v ∈ [0, 1] and a product price p ∈ R+, the

algorithm recommends that the buyer purchase the product with probability r(v, p).67

The algorithm is commonly known to the buyer and seller.

For any given algorithm, the game unfolds as follows. First, nature draws the seller’s

type c and the buyer’s value v. Second, the seller privately observes her type c but

not value v, and posts a price, p. With probability 1 − r(v, p), the algorithm does not

recommend the product, in which case trade does not occur. With probability r(v, p),

the algorithm recommends the product to the buyer, in which case the buyer observes

the recommendation and the price, and then decides whether to buy the product. If

trade occurs, the buyer and seller obtain ex post payoffs v − p and p − c, respectively.

Otherwise, both players obtain zero payoffs.

The solution concept is a perfect Bayesian equilibrium. If the product is recom-

mended, the buyer updates the expected value of the product to

E[v | recommended, p] =
∫ 1

0 xr(x, p)g(x)dx∫ 1
0 r(x, p)g(x)dx

,

and then purchases the product whenever this value weakly exceeds the price. A pair of

an algorithm and a buyer’s strategy induces a demand curve, which maps each price to

a probability of trade. In equilibrium, each seller type takes this demand curve as given

and chooses a price that maximizes her expected profit.

We call the buyer’s ex ante expected payoff buyer surplus and the ex ante seller’s

expected payoff seller profit. An algorithm attains a given buyer surplus if this buyer sur-

plus arises in an equilibrium under this algorithm. Our focus is on the recommendation

6The focus on direct recommendations is without loss of generality, relative to the setup in which
the algorithm can provide extra information about v upon recommendation.

7The dependence of information on price can be programmed directly, as seen in Amazon’s search
ranking algorithms (Lee and Musolff (2023), Farronato et al. (2023)), or it can arise indirectly through
consumer feedback technology (Luca and Reshef (2021), Chakraborty et al. (2022)), wherein higher
prices, all else being equal, lead to lower consumer satisfaction and ratings.
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algorithms that maximize buyer surplus:8

Definition 1. A recommendation algorithm is buyer-optimal if it attains a greater buyer

surplus than any other recommendation algorithm.

In what follows, it will be useful to distinguish between seller types who trade and

those who do not under a given algorithm and their posted prices. Given an algorithm

and an equilibrium, we say that a price is active if it results in a strictly positive trade

probability and is inactive otherwise. Similarly, we say that a type is active if she posts

an active price with a strictly positive probability and is inactive otherwise.

3 Buyer-Optimal Algorithm

In this section, we characterize the buyer-optimal algorithm. We say that an algorithm

r is a threshold algorithm if there exists a threshold function v̂ : R+ → [0, 1] such that

r(v, p) = 1(v ≥ v̂(p)), i.e., the algorithm recommends the product with probability 1 if

the value exceeds a price-dependent threshold and with probability 0 otherwise.

Lemma 1. (Threshold Algorithms) For any algorithm r, there exists a threshold algo-

rithm under which the buyer follows the recommendations and that yields a greater buyer

surplus than r and the same seller profit as r.

The proofs of this and all other results are in the Appendix. Lemma 1 shows that

threshold algorithms span a Pareto frontier in the space of buyer surplus and seller

profit. Intuitively, the buyer can be set to follow the recommendations because the

algorithm can anticipate and mimic the buyer’s response. In turn, the Pareto efficiency

of threshold algorithms follows from the observation that each seller type is concerned

solely with trade volume whereas the buyer surplus is maximized when the higher values

are prioritized. Consequently, if a buyer-optimal algorithm exists, then it can be found in

the class of threshold algorithms, and in what follows, we focus on threshold algorithms.

8In Section 5.1, we extend the analysis to a broader class of Pareto-optimal algorithms.
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The optimal choice of a threshold function must balance the trade-off between max-

imizing the trade surplus and incentivizing the seller to lower the price. One natural

option is to set v̂(p) = p so that the product is recommended if and only if the value ex-

ceeds the price. This ex post optimal algorithm maximizes the buyer’s payoff given fixed

prices. However, the algorithm fails to maximize buyer surplus because it underuses the

opportunity to dampen equilibrium prices.

To find an optimal algorithm, we assume that the buyer always follows the recom-

mendations and frame the designer’s problem as a nonlinear screening problem, where

the recommendation threshold responds to the price. The choice of a threshold at any

given price simultaneously determines the expected trade surplus, which is valued by

the buyer, and the expected trade volume, which is valued by the seller. We recover

the optimal threshold function by adapting the seminal analysis of Baron and Myerson

(1982) and confirm that, with this algorithm, the buyer indeed finds it rational to follow

the recommendations.

The optimal algorithm and equilibrium pricing are easier to describe not in terms of

price-dependent thresholds but in terms of value-dependent thresholds. Specifically, for

each v ∈ [0, 1], define the buyer’s pseudo value as

y(v) ≜ Eṽ∼G[Γ−1(ṽ)|ṽ ≥ v]. (1)

The pseudo value y(v) is an increasing function of v. When the true value is sufficiently

low, close to 0, the pseudo value is higher than the true value, y(v) > v, because

y(0) = Eṽ∼G[Γ−1(ṽ)] > 0. When the true value is sufficiently high, close to 1, the pseudo

value is below the true value, y(v) < v, because y(1) = Γ−1(1) < 1. Define c ≜ Γ−1(1).9

9Type c exists and is unique because Γ(·) is strictly increasing and continuous on [0, 1], and Γ(0) =
0 < 1 ≤ Γ(1).
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Proposition 1. (Buyer-Optimal Algorithm)

A buyer-optimal algorithm recommends the product if and only if y(v) ≥ p. Under this

algorithm, the seller of type c ≤ c posts p∗(c) = y(Γ(c)), and the seller of type c > c is

inactive. Under this algorithm and pricing, the trade occurs if and only if v ≥ Γ(c).

Proposition 1 reveals two notable features. First, the impact of the value and cost

distributions can be decoupled: Even though the optimal algorithm and the equilibrium

prices depend both on the cost and value distributions, the optimal product allocation

depends only on the cost distribution because the product is traded if and only if the

value exceeds the virtual cost. This feature is crucial for the market segmentation results

in Section 4.

Second, the buyer-optimal algorithm makes two types of ex post errors. When the

true value is sufficiently high, the pseudo value is below the true value, and the optimal

algorithm never recommends the product when the value is below the price. At the same

time, for seller types that satisfy y(v) < y(Γ(c)) < v, the algorithm does not recommend

the product even though the value exceeds the price. In contrast, when the true value is

sufficiently low, the pseudo value is higher than the true value and the algorithm always

recommends the product when the value exceeds the price. However, for seller types

that satisfy y(v) < y(Γ(c)) < v, the algorithm recommends the product even though the

value is below the price. As a result, compared with the ex post optimal algorithm, the

buyer-optimal algorithm induces overconsumption at low prices and underconsumption

at high prices. These distortions are optimal for the buyer because they incentivize the

seller to set lower prices.

Example 1 (Uniform). We illustrate the buyer-optimal algorithm in a canonical case

in which c and v are uniformly distributed on [0, 1]. In this case, the virtual cost is

Γ(c) = 2c; the pseudo value is y(v) = Eṽ∼U [0,1]
[

ṽ
2 | ṽ ≥ v

]
= (1+v)/4; and the associated

threshold function v̂(p) is equal to 0 for p < 1/4, to 4p − 1 for p ∈ [1/4, 1/2] and to 1 for

p > 1/2. The equilibrium price posted by active type c is p∗(c) = y(Γ(c)) = (1 + 2c)/4

for c ∈ [0, 1/2]. Types c > 1/2 are inactive and post, for example, p∗(c) = 1/2. A buyer

who receives a recommendation to purchase the product at price p ∈ [1/4, 1/2] infers

8



0.5 1

0.5

1

r = 1 r = 0

p

v

0.5 1

0.5

1
Γ(c)

p∗(c)

c

v

Figure 1: Optimal recommendation algorithm (left) and the resulting equilibrium pricing

strategy and trade region (right). v ∼ U [0, 1], c ∼ U [0, 1].

that the product’s expected value is (4p − 1 + 1)/2 = 2p > p and is thus strictly willing

to purchase it.

The left side of Figure 1 depicts the optimal recommendation threshold (solid line)

along with the ex post optimal recommendation threshold (dashed line). As we discussed

above, the ex ante optimal algorithm is suboptimal ex post in two ways: If the product

price is low, i.e., p < 1/3, it recommends the product even when the value is below the

price; if the product price is high, i.e., p > 1/3, the algorithm does not recommend the

product even when the value is above the price.

The right side of Figure 1 depicts the resulting equilibrium pricing and trade: The

price p∗(c) posted by the seller of type c, the region of values and types in which the

trade occurs (filled area), and the efficient trade region (area encircled by dashed lines).

In accordance with Proposition 1, under an optimal algorithm, trade occurs whenever

the buyer value is greater than the seller’s virtual cost. Type c = 0 always trades; all

higher types post progressively higher prices and serve progressively fewer buyers. Types

c > 1/2 never trade. Equilibrium active prices span the interval [1/4, 1/2]. ♢

Remark 1. The buyer-optimal algorithm combines commitment and information. By

disclosing information about a product in a predetermined way, the algorithm enables
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the buyer to follow a specific demand schedule and obtain a higher surplus than in the

standard monopoly setting, where the buyer is fully informed about both the value and

existence of the product.

Specifically, as our proof reveals, the optimal algorithm in Proposition 1 attains the

same outcome as when the buyer is aware of the product’s existence, can observe the

product’s value, and has full commitment power over purchasing decisions and monetary

transfers at different product values. As a result, even though the algorithm serves only

information, it effectively transfers market power from the seller to the buyer. This

observation has two consequences. First, the same algorithm remains optimal in the

case of fully automated trade, i.e., if it could execute transactions without having the

buyer in a loop, or if the algorithm could charge monetary transfers to the seller, e.g.,

referral or commission fees. Second, the same outcome would be optimal even if the

seller could employ more general trade protocols than a posted price. In that case, a

buyer-optimal algorithm would recommend products sold via posted prices according

to the characterization in Proposition 1 and would never recommend products sold via

alternative protocols.

4 Algorithm Design and Market Segmentation

In this section, we show that algorithmic consumption has major consequences for third-

degree price discrimination. Specifically, we enable the seller to observe and base prices

on signal I = (S, π) informative about the buyer’s value. The signal consists of a set

S of signal realizations s and a family of probability distributions {π(·|v)}v∈[0,1] over

S. We write π̂(s) for the marginal probability of signal realization s ∈ S and Gs

for the posterior value distribution conditional on s. Each signal can be viewed as a

market segmentation, with π̂ capturing the relative frequency of buyer segments and Gs

capturing the distribution of buyer values within each segment (cf. Bergemann et al.

(2015)). The signal is exogenous, and the signal realization is independent of the seller’s

type.
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We assume that the algorithm can perfectly distinguish different market segments

so that the cost information remains the only private information of the seller.10 As

the seller can set different prices in different segments, the optimal algorithm’s recom-

mendations should depend on the segment as well. In fact, the buyer-optimal segment-

dependent algorithm must be buyer-optimal in each segment and is thus characterized

in each segment s by Proposition 1, with the value distribution being Gs:11 For each

s ∈ S, the optimal algorithm recommends the product if and only if the corresponding

pseudo value exceeds the price, i.e.,

ys(v) ≜ Eṽ∼Gs [Γ−1(ṽ)|ṽ ≥ v] ≥ p.

In equilibrium, the seller with type c posts a price of

p∗
s(c) ≜ ys(Γ(c)) = Eṽ∼Gs [Γ−1(ṽ)|ṽ ≥ Γ(c)] (2)

and transacts whenever v ≥ Γ(c).

Importantly, in contrast to the recommendation function or the seller’s pricing, the

product allocation, when viewed as a function of value and cost, is the same across all

segments. This enables us to derive sharp implications of finer market segmentation.

For any active type c, we define the distribution of prices of type c as the distribution of

p∗
s(c) when we fix c and draw s from distribution π̂. The corresponding profit of type c

is

π(c) ≜ Es,v[(p∗
s(c) − c)1(ys(v) ≥ p∗

s(c)) | c ], (3)

where the expectation is taken with respect to v ∼ G and s ∼ π(·|v).

10As the algorithm knows the value, this assumption is trivially satisfied if the seller’s signal is fully
informative or, more generally, partitional.

11Formally, for simplicity, in Section 3, we assumed that the value distribution has full support on
an interval. However, our derivation of Proposition 1 did not rely on this assumption, and thus the
result applies to any market segment.

11



Proposition 2 (Segmentation Neutrality). For any signal I available to the seller,

the buyer-optimal algorithm induces the same ex post product allocation, the same profit

of each seller type, and the same ex ante buyer surplus.

Proof Outline. Consider the buyer-optimal algorithms with and without the seller’s sig-

nal I. Under either algorithm, in equilibrium, the trade occurs if and only if v ≥ Γ(c),

and the highest type, c = 1, earns zero profit as she never trades. We can view the

two algorithms as indirect mechanisms that induce the same allocation rule and yield

the same profit for type c = 1 when the seller prices in an incentive-compatible way. A

version of the revenue equivalence theorem (Lemma 2 in the appendix) implies that the

individual profit of each seller type with and without the seller’s signal I must coincide.

Consequently, the buyer surplus, which is the total surplus minus the seller’s ex ante

profit, is also identical in the two settings.

Proposition 2 establishes in a stark manner that no seller types benefit from having

more information about the buyer value, and the buyer neither benefits from nor is

harmed by the release of such information on average, as long as this release is accounted

for in the algorithm design.

Despite the neutral aspects highlighted by Proposition 2, a change in market segmen-

tation does affect the optimal algorithm, the equilibrium pricing, and the distribution

of payoffs across buyers with different valuations. To analyze the redistribution effect,

we define the buyer surplus at value v and type c, w(v, c), as the equilibrium expected

payoff of the buyer conditional on his value being v and the seller’s type being c:

w(v, c) ≜ Es[(v − p∗
s(c))1(ys(v)) ≥ p∗

s(c)) | v ], (4)

where the expectation is taken with respect to signal realization s ∼ π(·|v) conditional on

value v. Similarly, we define the distribution of buyer surplus at type c as the distribution

of w(v, c) with v ∼ G. Furthermore, we will obtain a cleaner characterization and

stronger results for the natural class of monotone partitional signals.
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Definition 2. A signal I is monotone partitional if there exists a finite partition of [0, 1]

into intervals {I1, ..., In} such that for each interval Ik and each v ∈ Ik, π(·|v) assigns

probability 1 to either (i) s = v or (ii) s = k.

Under a monotone partitional signal, each market segment is either a singleton or

an interval. Furthermore, different buyer values belong to different segments; thus, the

segment dependency in the description of an algorithm, which already conditions on

the value, is redundant. The buyer-optimal algorithm and equilibrium pricing can be

described segment by segment. Consider a segment [v, v], which either equals Ik for some

k or satisfies v = v. By Proposition 1, for all v ∈ [v, v], the buyer-optimal algorithm

recommends the product if and only if the pseudo value y(v) = Eṽ∼G[Γ−1(ṽ)|v ≥ ṽ ≥ v]

is above the price. Given this algorithm, in the segment [v, v], the seller of type c posts

a price

p∗
[v,v](c) =


Eṽ∼G[Γ−1(ṽ)|v ≥ ṽ ≥ Γ(c)] if v ≤ Γ(c) ≤ v,

Eṽ∼G[Γ−1(ṽ)|v ≥ ṽ ≥ v] if Γ(c) < v.

(5)

In particular, if the buyer value is revealed to be v (i.e., v = v = v), the algorithm

recommends the product if and only if the price is below Γ−1(v), and any seller with a

cost below this value posts price Γ−1(v).

Proposition 3 (Segmentation Redistribution). If signal IH is Blackwell more in-

formative than IL, then the distribution of prices set by each seller type under IH is a

mean-preserving spread of that under IL. Furthermore, if signals IH and IL are mono-

tone partitional, then the distribution of individual buyer surplus at any seller type under

IH is a mean-preserving contraction of that under IL.

When the seller faces a more informative signal, the posterior beliefs on values condi-

tional on signal realizations and the event v ≥ Γ(c) become a mean-preserving spread of

the posterior beliefs when the seller faces a less informative signal. By Equation 2, the

equilibrium prices are linear in these beliefs; thus, the prices undergo a mean-preserving

spread as the signal becomes more informative.

13



To gain intuition about the buyer surplus at different values, compare the seller who

has no information and the seller who perfectly observes the value. When the seller has

no information, the seller of type c posts a price of Eṽ∼G[Γ−1(ṽ)|ṽ ≥ Γ(c)] regardless

of the value, and any buyer with value v ≥ Γ(c) trades at that price. When the seller

has full information, the price depends on the segment, and for the buyer with value

v, the seller of type c posts a price of Γ−1(v). The buyer trades at this price, which

is increasing in value. As a result, the seller’s information increases the prices set for

buyers with higher values, whereas the average remains the same by the first part of

the argument. Consequently, the seller’s information increases the individual surplus of

buyers with high values and decreases the individual surplus of buyers with low values,

leading to a more equalized surplus distribution.

The intuition behind the general monotone partitional signals is similar. In fact, the

proof of Proposition 3 establishes an additional result: For any monotone partitional

signal I and type c, a cutoff v(c, I) exists such that the buyer surplus at value v and

type c is greater with signal I than under no information if and only if v ≤ v(c, I).12

Example 1 (Continued). Let v and c be uniformly distributed on [0, 1]. Suppose that

the seller has access to a monotone partitional signal with a uniform grid, i.e., each Ik

is an interval between k−1
n

and k
n
. All values in interval Ik are pooled into signal k. Let

I(v) denote the interval to which value v belongs.

We fix any type c < 1
2 and examine how the equilibrium price and buyer surplus at

v and c vary across v ≥ 2c. Let k = 1, . . . , n satisfy 2c ∈ Ik. If v ∈ Im, the seller will

observe signal realization m and infer that the value is uniformly distributed between

12Monotone partitional signals are not the only class of signals under which Proposition 3 holds. For
example, in the previous version of the draft, we established this result for the truth-or-noise signals
(Lewis and Sappington, 1994). However, some signal restrictions are necessary: If the finer segmentation
separates high-value buyers from medium-value buyers while pooling them with low-value buyers, the
price charged to those buyers may decrease, exacerbating payoff inequality.
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Figure 2: Buyer-optimal algorithm thresholds (left) and buyer surplus at different val-

ues (right). Computed at no segmentation (solid), binary partition (dashed), and full

segmentation (dotted). v ∼ U [0, 1], c ∼ U [0, 1].

m−1
n

and m
n

. As a result, the price posted by type c against value v is

p(c, v) = Eṽ∼G

[
ṽ

2
∣∣∣ṽ ≥ 2c, ṽ ∈ I(v)

]
=


2cn+k

4n
, if v ∈ Ik,

2m−1
4n

, if v ∈ Im, m > k.

The buyer’s surplus at v ≥ 2c is w(v, c) = v − p(c, v).

Figure 2 depicts the optimal algorithm thresholds and the buyer surplus Ec∼F [w(·, c)]

at different values for the uninformative signal, the signal represented by binary partition

{[0, 0.5], (0.5, 1]} and the fully informative signal. As the market segmentation becomes

finer, the equilibrium price responds more to the buyer value, which redistributes the

surplus from higher to lower values. As a result, the finer market segmentation, or more

buyer information provided to the seller, makes the distribution of buyer surplus more

equalized across different values.

Proposition 3 generalizes this observation for Blackwell-comparable market segmen-

tations, which, in the case of uniform monotone partitions, correspond to partitions with

nH and nL elements such that nH/nL ∈ N. ♢
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5 Discussion and Extensions

5.1 Pareto-Optimal Algorithmic Consumption

Thus far, we have focused on buyer-optimal algorithmic consumption. A natural and

broader question is what algorithmic consumption is Pareto optimal, i.e., which buyer

surplus and seller profit cannot be simultaneously improved upon. In Lemma 1, we

showed that such consumption is induced by threshold algorithms. In this section, we

show that the algorithm thresholds must be increasing and that the characterization of

Pareto-optimal algorithms is fully analogous to the characterization of a buyer-optimal

algorithm.

To this end, assume that the designer’s objective is a weighted average of buyer

surplus and seller profit, with weights of α and 1 − α, respectively. Call an algorithm

α-optimal if it maximizes this objective for weight α. As α spans [0, 1], the α-optimal al-

gorithms span the range from seller-optimal to socially-optimal to buyer-optimal. Define

an α-virtual cost as follows:

Γα(c) ≜ c + max
{2α − 1

α
, 0
}

F (c)
f(c) , (6)

and assume that for all α ∈ [0, 1], Γα(c) is strictly increasing.13 Define an α-pseudo

value as:

yα(v) ≜ Eṽ∼G[Γ−1
α (ṽ)|ṽ ≥ v]. (7)

Proposition 4 (α-Optimal Algorithm). An α-optimal algorithm recommends the

product if and only if yα(v) ≥ p. Under this algorithm, type c posts p∗(c) = yα(Γα(c)).

Under this algorithm and pricing, the trade occurs if and only if v ≥ Γα(c).

Proposition 4 shows that the characterization of an α-optimal algorithm follows ver-

batim the characterization of a buyer-optimal algorithm, with the virtual cost and the

13As before, if for some α ∈ [0, 1], Γα(c) were not everywhere increasing, then one would simply use
an ironed version of it.
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pseudo value replaced by their α-analogs. Importantly, the product allocation continues

to be independent of value distribution. Consequently, the results on the neutrality of

market segmentation in Section 4 apply to any Pareto-optimal algorithmic consumption.

As the weight α attached to buyer surplus decreases, the difference between an α-

virtual cost and a true cost decreases. By Proposition 4, this translates into the trade

occurring over a broader range of costs and values, thus generating more total surplus.

Moreover, for all α ≤ 1/2, the α-virtual cost coincides with the true cost. Therefore, a

seller-optimal algorithm and a socially-efficient algorithm coincide and, as shown below,

feature a simple recommendation structure:

Corollary 1 (Seller-Optimal Algorithm). A threshold algorithm with v̂(p) such that

E[v | v ≥ v̂(p)] = p for all p ∈ [E[v], 1] simultaneously maximizes the seller profit and

total surplus and, moreover, achieves efficient trade.

The seller-optimal algorithm maximizes efficiency at the expense of the buyer. For

any price, the algorithm maximally pools products of different values to the extent that

the buyer is still willing to purchase when recommended. This results in a threshold

recommendation, and given the full support assumption on G, a threshold is uniquely

defined for all p ∈ [E[v], 1]. Under this algorithm, the buyer is guaranteed a zero expected

payoff irrespective of the posted price. Thus, the seller, regardless of cost, understands

that she captures all the surplus generated, and her goal of maximizing profit aligns

perfectly with efficiency. As a result, the seller of type c will post a price p(c) that leads

to an efficient trade, i.e., p(c) = E[v|v ≥ c]. The resulting product allocation is efficient,

the seller obtains the maximal feasible surplus, and the buyer is left with no rent.14

Corollary 1 entails a notable feature: The persuasion constraint of the buyer, i.e.,

the requirement that the buyer is always willing to follow recommendations, does not

constrain the designer at all points of the Pareto frontier except the seller-optimal one.

Indeed, by Corollary 1, α-optimal algorithms for α ∈ [0, 1/2] induce the same outcome.

Moreover, this outcome is fully efficient; thus, at α = 1/2, the designer achieves a first-

14Gottardi and Mezzetti (2024) use a similar argument to construct an efficient one-shot mediation
mechanism.
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best outcome and the persuasion constraint does not bind. In turn, for α > 1/2, as

the weight given to buyer surplus increases, the recommendations become even more

favorable to the buyer, and the buyer is willing to follow them.

5.2 Competing Sellers

Thus far, we have focused on a monopoly setting in which a given product can be

supplied only by a single seller. Applied seller-by-seller, this analysis also covers cases

where multiple sellers offer noncompeting products. However, a natural alternative is

a market in which sellers compete for the buyer so that the recommendation algorithm

directs the buyer to one out of many alternatives (e.g., Hagiu and Jullien (2011), Hagiu

et al. (2022), Elliott et al. (2022), Bar-Isaac and Shelegia (2022)). In this section, we

show that our characterization of optimal algorithms and the main welfare implications

extend to that setting.

Formally, we consider the following extension of the main setting. There is a single

buyer with unit demand. There are J sellers indexed by j = 1, . . . , J , each offering a

single product. The buyer values for the products, (v1, ..., vJ) ∈ RJ , are drawn from

a joint distribution G ∈ ∆([0, 1]J) and can be arbitrarily correlated. The cost of each

seller j is drawn from Fj, independent of other costs or the value profile. For notational

convenience, we introduce a dummy seller indexed by j = 0 with v0 = 0 and c0 = 0 that

corresponds to the buyer’s decision not to buy anything.

An algorithm is a function r : [0, 1]J × RJ
+ → ∆J+1, where ∆J+1 is a J + 1 di-

mensional simplex, so that for any profiles of realized values v = (v1, ..., vJ) and prices

p = (p1, ..., pJ), the algorithm recommends that the buyer purchase one of the products

or none according to r(v, p) ∈ ∆J+1. The algorithm is commonly known to the buyer

and sellers. Given an algorithm, nature draws the seller types cj and the buyer values

vj. All sellers privately observe their types but not the buyer values or the types of other

sellers and simultaneously post their prices pj. The algorithm makes recommendations

according to r. If no product is recommended, trade does not occur. If a product of

seller j is recommended, the buyer observes the recommendation and the price and then
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decides whether to buy the product. If product j is purchased, the buyer and seller j

obtain ex post payoffs vj − pj and pj − cj, respectively. Otherwise, the players obtain

zero payoffs. The solution concept is perfect Bayesian equilibrium.

Despite featuring strategic interaction between the sellers, this setting can be ana-

lyzed analogously to the single seller case. The main idea is that each seller’s private

information and thus the incentive constraints are similar in both cases: From the per-

spective of each seller, the value and cost uncertainty, as well as the strategic behavior

of other sellers, matter only insofar as they affect her demand curve, and they can be

encoded in a single variable.

Specifically, for each j, denote by Γj(cj) her virtual cost. For the dummy seller 0, we

set Γ0(c0) = 0. Assume that for j = 1, . . . , J , Γj is strictly increasing and continuous in

cj. Define cj ≜ Γ−1
j (1). Define an auxiliary random variable

θj = vj − max
k∈{0,1,...,J}\j

{vk − Γk(ck)},

i.e., θj is the value of seller j’s product minus the highest virtual surplus among all other

sellers as long as the latter is positive. Define

p∗
j(cj) ≜ Eθj

[Γ−1
j

(
θj

)
| Γ−1

j (θj) ≥ cj], (8)

and observe that p∗
j(cj) is a strictly increasing function. Define the inverse function

of p∗
j as p∗

j
−1 with the (nonstandard) convention that p∗

j
−1(p) = 0 for p < p∗

j(0) and

p∗
j

−1(p) = 1 for p > p∗
j(1).
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Proposition 5 (Buyer-Optimal Algorithm with Competing Sellers). A buyer-

optimal algorithm recommends the product of seller j∗(v, p) such that

j∗(v, p) ∈ argmax
j∈{0,1,...,J}

vj − Γj

(
p∗

j
−1(pj)

)
, (9)

with ties being broken arbitrarily. Under this algorithm, seller j of type cj ≤ cj posts price

p∗
j(cj) and seller j of type cj > cj is inactive. Under this algorithm and pricing, for any

realized profile of v and c, the buyer trades with seller j∗ ∈ argmaxj∈{0,1,...,J} vj − Γj(cj).

Proposition 5 directly extends Proposition 1. To see this, observe that in the case

of J = 1, the condition v1 − Γ1
(
p∗

1
−1(p1)

)
≥ v0 − Γ0

(
p∗

0
−1(p0)

)
= 0 is equivalent

to the condition y(v1) ≥ p1; thus, the two propositions describe the same algorithm

albeit in different terms. In the case of many sellers, the condition vi − Γi

(
p∗

i
−1(pi)

)
≥

vj − Γj

(
p∗

j
−1(pj)

)
for i, j ̸= 0 cannot be easily translated into the language of pseudo

values, so we present the buyer-optimal algorithm as in (9).

Importantly, as in the case of a single seller, Proposition 5 establishes that the equilib-

rium product allocation does not depend on the distribution of product values. Similarly,

it allows us to succinctly analyze the impact of market segmentation. Formally, market

segmentation is defined by an information structure I = (S, π) that consists of a set

S = ×iSi of signal realizations si privately observed by each seller, and a family of

probability distributions {π(·|v)}v∈[0,1]J over S. The signal is commonly known and ex-

ogenous, the signal realizations are independent of the seller types but can be arbitrarily

correlated across sellers, and the algorithm can base recommendations on the realized

signals, the values, and the product prices.15

Proposition 6 (Segmentation Neutrality with Competing Sellers). For any

market segmentation, the buyer-optimal algorithm induces the same ex post product al-

location, the same profit of each seller type, and the same ex ante buyer surplus.

15As before, the assumption that the algorithm can base recommendations on the realized signals
captures the idea that the sellers have no information beyond that accessed by the algorithm. This
assumption is automatically satisfied if the signals are deterministic functions of the value profile, i.e.,
partitional or fully informative signals.
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Proposition 6 implies the remarkable neutrality of market segmentation if the buyer

uses an algorithm to guide consumption choices. As in Section 4, leaking buyer data not

only does not harm the buyer but also cannot benefit him, despite competition among

sellers. Intuitively, because the algorithm can assess the buyer’s value and is designed

prior to pricing decisions, it shifts the bargaining power to the buyer, and informing

the sellers can only reduce the attainable buyer surplus. Furthermore, by adapting to

the specifics of market segmentation, the optimal algorithm design can perfectly absorb

the impact of information leakage on total buyer surplus, seller profits, and product

allocation.

At the same time, market segmentation does affect equilibrium pricing and the re-

distribution of buyer surplus across different value profiles. Our analysis behind Propo-

sition 6 reveals that equilibrium pricing can be decomposed across sellers, with each

seller’s pricing strategy depending only on her beliefs about the value profile, and being

indifferent to information observed by other sellers. This immediately allows us to claim

an impact of finer market segmentation on prices:

Proposition 7 (Segmentation Redistribution with Competing Sellers). If signal

IH is Blackwell more informative than IL, then the distribution of prices set by each

seller type under IH is a mean-preserving spread of that under IL.

By Proposition 7, notably, any finer market segmentation—regardless of how the

additional information is correlated across sellers—results in a clear pattern of more

dispersed prices, just as under a monopoly. However, and not surprisingly, the impact

on surplus distribution is subtler than that under a monopoly. With multiple sellers,

finer segmentation may group lower values for one seller’s product with higher values

for another seller’s product, leading to a higher trade price and lower surplus for some

low-value buyers, thus violating the mean-preserving contraction property.
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5.3 Informed Buyer

Up to this point, we have deliberately assumed that the algorithm has full control over

the buyer’s information both about the product’s existence and about the product’s

value. This assumption offered a clear benchmark for studying algorithmic consumption,

provided the algorithm with maximal information to control and thus established the

upper bound on achievable buyer surplus. In this section, we relax this assumption and

show how our analysis remains relevant even if the buyer is partially informed.

5.3.1 Information about Product Existence

We have assumed that the buyer cannot purchase the product if it is not recommended.

This assumption is relevant in online settings where recommendation systems are used

primarily to discover and bring products to the buyer’s attention.16 A natural alternative

setting is one in which the buyer already knows the product exists and where to purchase

it but may still be unsure about the match value. To address that setting, in this

subsection, we allow the buyer to purchase the product even if it is not recommended,

and impose a constraint that the buyer prefers not to purchase the nonrecommended

product at each price.

First, consider the simplest case in which the seller’s cost is commonly known to be

c0. This case is closest to the seminal paper by Roesler and Szentes (2017) and differs

only in the timing of the recommendations. In their setting, recommendations come

before the price is posted and thus cannot condition on the price; in this setting, the

recommendations can condition on the price.

When the costs are known to be c0, a natural candidate for a buyer-optimal algorithm

is to recommend the product if and only if p = c0 and v ≥ c0. If this algorithm suffices

to incentivize the seller to set p = c0, then it is buyer-optimal because the outcome is

efficient and leaves the seller with zero profit.

If E[v] ≤ c0, an algorithm can attain this outcome by revealing no information

16This assumption is consistent with the consideration set approach to model recommender systems.
See, for example, Dinerstein et al. (2018) and Lee and Musolff (2023).
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whenever p > c0 and thus dissuading the buyer from purchasing at a price above c0.

In contrast, if E[v] > c0, the seller can secure a positive profit by charging a price in

(c0,E[v]) because no algorithm can make the buyer believe that the expected value of

the product is always below p < E[v]. In this case, the buyer-optimal algorithm deters

the seller from setting a higher price via adversarial persuasion: At each price, the

algorithm provides the buyer with information that minimizes the probability of trade.

Specifically, the algorithm reveals whether v < v̂(p), where v̂(p) is such that

E[ṽ|ṽ < v̂(p)] = min{p,E[v]}, (10)

and persuades the buyer to purchase only when v ≥ v̂(p). The maximum profit the

seller can guarantee against adversarial persuasion is

π ≜ max
p≥c0

(p − c0)[1 − G(v̂(p)]. (11)

The buyer-optimal algorithm induces an efficient trade while leaving the seller with this

profit:

Proposition 8 (Known Product. Known Cost). Suppose that F is concentrated

at c0 ∈ [0, 1) and that the buyer can purchase the product even when not recommended.

The buyer-optimal algorithm recommends the product if p∗ = c0 + π
1−G(c0) and v ≥ c0

and follows all other prices with adversarial persuasion. Under this algorithm, the seller

posts a price p∗, and the equilibrium trade is efficient.

Like in the setting of Roesler and Szentes (2017), a buyer-optimal algorithm leads

to efficient trade. Unlike the setting of Roesler and Szentes (2017), the seller’s rent is

driven by adversarial persuasion price-by-price and thus is lower, reaching zero when

E[v] < c0, e.g., when the product can be counterfeit or harmful with a high probability.

Note that if the seller’s cost is known to be c0 in our original setup, the buyer-optimal

algorithm is to recommend the product if and only if p = c0 and v ≥ c0. This algorithm

always attains the efficient outcome and leaves the seller with zero profit. Therefore,
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when c0 < E[v], the design and consequences of the optimal algorithm depend on whether

the buyer can purchase the nonrecommended product, whereas if c0 > E[v] they do not

depend on it.

Furthermore, when the seller’s costs are uncertain, the buyer-optimal algorithms in

both cases can coincide even when the cost could fall below E[v]. This happens, for

example, in the uniform setting of Example 1: Under the buyer-optimal algorithm, the

lack of recommendation is a sufficiently negative signal at any price to dissuade the

buyer from the purchase. More generally:

Proposition 9 (Known Product. Unknown Cost). If
∫ Γ(c)

0 [v − c]dG(v) ≤ 0 for

each c ∈ [0, c] and the buyer can purchase the product even when not recommended, then

the algorithm in Proposition 1 is buyer optimal.

The condition of Proposition 9 ensures that whenever the product is not recom-

mended under the algorithm of Proposition 1, the buyer infers that the expected value

of the product is below the price. This holds for many classes of distributions, for exam-

ple, when (i) F (c) = cα and G(v) = vβ with 0 < α ≤ β or (ii) G is uniform and F (c)/c

is increasing.17 To see the intuition behind this sufficient condition, suppose that the

seller posts a price of p∗(c), and the algorithm recommends that the buyer not purchase

the product, which by Proposition 1, reveals that v ≤ Γ(c). If the buyer purchases

the product, his payoff must decrease because the seller’s profit increases but total sur-

plus decreases because
∫ Γ(c)

0 [v − c]dG(v) ≤ 0. Thus, the buyer is willing to follow the

recommendation not to buy.

5.3.2 Information about Product Value

Thus far, we have assumed that the buyer does not obtain any product information be-

yond what is provided by the algorithm. This stylized assumption is intended to capture

the context of experience goods, which can be difficult to judge based on appearance and

17Point (i) follows from direct calculation. For Point (ii), note that the condition ( F (c)
c )′ ≥ 0 is

written as Γ(c)
c ≤ 2, which is equivalent to

∫ Γ(c)
0 [v − c]dG(v) ≤ 0 when G = U [0, 1].
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for which individual taste shocks are sufficiently variable yet can be estimated by a well-

trained recommendation system. In this section, we allow for the possibility that the

buyer observes additional information about the value when a product is recommended

while maintaining the original ignorance of the product’s existence.18

We show how our previous analysis informs this setting. First, observe that the

buyer’s incentives in the buyer-optimal algorithm of Proposition 1 are generally slack.

That is, whenever a product is recommended, the buyer strictly prefers to follow the

recommendation. Therefore, a small amount of extraneous information that does not

significantly lower the posterior expectation will not interfere with the algorithm’s design.

Second, our market segmentation analysis implies that even if the buyer can perfectly

assess the value of the product upon seeing it, the algorithm can still achieve the same

total buyer surplus, seller surplus, and product allocation, although this would require

informing both the seller and the buyer. Specifically, suppose that the buyer observes

the value v of the product whenever it is recommended. When the seller does not know

v, the algorithm in Proposition 1 is not incentive compatible because the buyer will

ignore the recommendation when p and v are such that v < p < y(v), which occurs

for low values. However, if the algorithm perfectly informs the seller about v, then the

buyer-optimal algorithm, as characterized in Section 4, recommends the product if and

only if p ≤ Γ−1(v) < v. Under this algorithm, buyers with all values v are willing to

follow the recommendations because, intuitively, informed sellers lower the prices offered

to low-value buyers. By Proposition 2, this algorithm implements the same total buyer

surplus, seller profits, and product allocation. Remarkably, in the case of algorithmic

consumption, third-degree price discrimination not only does not harm the total buyer

surplus but also may be beneficial if the algorithm cannot fully control the buyer value

information.

18The remaining case of a buyer perfectly informed about the product’s existence and value is a
textbook monopoly setting.
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6 Conclusion

In this paper, we studied the question of optimal algorithmic consumption in the pres-

ence of strategic pricing. We showed that optimal algorithm recommendations must

strike a balance between increasing the trade surplus and inducing low prices. The op-

timal algorithmic consumption drastically changes the predictions of third-degree price

discrimination, whereby finer market segmentations by the sellers do not affect the total

consumer surplus or seller profits but result in larger price spreads and more equitable

surplus distribution.

We view our work as a stepping stone toward a better understanding of algorithmic

design in strategic settings with incomplete information. First, our model of algorithms

is deliberately stylized to analyze strategic motives in a clear and tractable way. A prac-

tical implementation would ideally incorporate many engineering concerns from which

we abstracted away, such as value estimation details, computational complexity, and

robustness. Second, it would be interesting to study market structures for algorithm

providers and understand which of the algorithms that we characterize are favored by

one or another market structure. Third, the developed ideas of algorithmic decisions can

be exported beyond consumption settings, such as to algorithmic matching or algorith-

mic negotiations. All this further research can be built upon the analytical framework

proposed in this paper.
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Appendix: Ommited Proofs

A Proof of Lemma 1

Take any algorithm r. For each p ≥ 0, let qr(p) ≜
∫ 1

0 r(v, p)dG(v) denote the probability

with which the product is recommended, and thus purchased, under r. We define a

new algorithm r̂ as r̂(v, p) ≜ 1(v > G−1(1 − qr(p))). At each price p, this algorithm

recommends the product with the same probability as r, 1 − G(G−1(1 − qr(p))) = qr(p).

Moreover, the expected value of the product, conditional on the recommendation, is

greater under r̂ than under r. As a result, the buyer will purchase the product whenever

it is recommended by r̂, and at each price p, the seller will earn the same profit under

both r and r̂. Therefore, r̂ has an equilibrium that attains a greater buyer surplus than

r with the same seller profit as r. □
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B Proof of Proposition 1

By the revelation principle, we can study algorithm design by analyzing direct mecha-

nisms in which the seller reports the type to the designer and the designer chooses which

valuations to allocate to the seller and at which price. Furthermore, by Lemma 1, we

can focus on threshold allocations. The designer’s problem can thus be stated as follows:

max
v̂:[0,1]→[0,1], p:[0,1]→R+

∫ 1

0

∫ 1

v̂(c)
(v − p(c)) dG dF, (12)

s.t.
∫ 1

v̂(c)
(p(c) − c)dG ≥

∫ 1

v̂(c′)
(p(c′) − c)dG ∀ c, c′ ∈ [0, 1],∫ 1

v̂(c)
(p(c) − c)dG ≥ 0 ∀ c ∈ [0, 1].

One way to solve this problem is to reformulate it in familiar terms. Because the

value is continuously distributed, the expected trade probability q ≜
∫ 1

v̂ dG is strictly

decreasing in v̂, spanning [0, 1] as v̂ spans [0, 1]. Hence, q and v are in a one-to-one

relationship, and instead of maximizing over v̂(c), we can maximize over q(c). With a

small abuse of notation, denote by v̂(q) the threshold that results in a given q and by

V (q) ≜
∫ 1

v̂(q) vdG the corresponding trade surplus. The trade surplus is strictly increasing

in q with V (0) = 0 and V (1) = E[v]. Moreover,

dV

dq
= ∂V/∂v̂

∂q/∂v̂
= −v̂g(v̂)

−g(v̂) = v̂(q). (13)

As such, V (q) is a concave function with V ′(0) = 1 and V ′(1) = 0. Finally, we denote

the expected revenue by t(c) ≜ p(c)
∫ 1

v̂(c) dG. In terms of these variables, we can restate

problem (12) as follows:

max
q:[0,1]→[0,1], t:[0,1]→R+

∫ 1

0
(V (q(c)) − t(c)) dF, (14)

s.t. t(c) − cq(c) ≥ t(c′) − cq(c′) ∀ c, c′ ∈ [0, 1],

t(c) − cq(c) ≥ 0 ∀ c ∈ [0, 1].

Problem (14) is analogous to the problem analyzed by Baron and Myerson (1982)
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if q is interpreted as a quantity produced and V is interpreted as the welfare generated

by producing quantity q. Its celebrated solution sets the optimal quantity to equalize

marginal welfare benefits with virtual costs and the optimal transfer to guarantee the

incentive-compatible profit distribution:

V ′(q(c)) = Γ(c),

t(c) − q(c)c =
∫ 1

c
q(x) dx =

∫ 1

c
1 − G(Γ(x)) dx.

By Equation 13, we can translate this solution back to problem (12) as

v̂(c) = Γ(c),

p(c) = c +
∫ 1

c 1 − G(Γ(x)) dx

1 − G(Γ(c))

= c +
∫ 1

c (x − c)g (Γ(x)) Γ′(x)dx

1 − G (Γ(c)) (integration by parts)

= c +
∫ Γ(1)

Γ(c) (Γ−1(v) − c)g(v)dv

1 − G (Γ(c)) (change of variable with v = Γ(x))

=
∫ Γ(1)

Γ(c) Γ−1(x)g(x)dx

1 − G (Γ(c))

= E[Γ−1(v)|v ≥ Γ(c)]

= y(Γ(c)).

We now show that the algorithm and the equilibrium in the statement attain the same

outcome as above. First, the buyer is willing to purchase the product when recommended

because

E[v|y(v) ≥ p(c)] = E[v|y(v) ≥ y(Γ(c))] = E[v|v ≥ Γ(c)] ≥ E[Γ−1(v)|v ≥ Γ(c)] = p(c).

Thus, the expected value of the product conditional on each possible price exceeds the

price.

Second, the seller with each type c is willing to set price y(Γ(c)). Deviating to
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another price in [y(Γ(0)), y(Γ(c))] is not profitable because of the incentive compatibility

constraints of the mechanism. Deviating to a price below y(Γ(0)) or above y(Γ(c)) is

not profitable either because it results in a lower profit than p = y(Γ(0)) or no trade.

Finally, if the buyer follows the recommendation and each type c sets price y(Γ(c)),

the trade occurs if and only if y(v) ≥ y(Γ(c)), or equivalently, if v ≥ v̂(c) = Γ(c).

In summary, the algorithm described in the statement implements the solution to

problem (12) in equilibrium. Therefore, it is a buyer-optimal algorithm. □

C Proofs of Proposition 2 and Proposition 3

To prove Proposition 2, we establish a version of the payoff equivalence theorem for our

model (cf. Myerson (1981) and Krishna (2009)).

Lemma 2 (Payoff Equivalence). For each i ∈ {1, 2}, take an algorithm ri, market

segmentation Ii, and equilibrium Ei. Suppose that E1 and E2 have the same allocation

rule in terms of v and c and the same profit of the seller at type c = 1. Then, the seller’s

profit of any type and the buyer surplus are identical between E1 and E2.

Proof. Let q(v, c) denote the probability of a trade when the value is v and the type is c,

and let q(c) =
∫ 1

0 q(v, c) dG(v) denote the expected probability of a trade for type c. Upon

calculating these objects, we take expectation with respect to the possible segments. Let

π denote the profit of the seller with the highest type, c = 1. By assumption, q(·, ·) and

π are the same between E1 and E2. Additionally, let πi(c) and ti(c) denote the profit and

the expected monetary transfer, respectively, at type c in equilibrium Ei.

In equilibrium Ei, type c = 1 cannot earn a strictly higher profit by imitating the

pricing strategy of type c′ in every segment in Ii. This incentive compatibility constraint

is

ti(c) − cq(c) ≥ ti(c′) − cq(c′), ∀c, c′ ∈ [0, 1].

The envelope theorem implies that

πi(c) = π +
∫ 1

c
q(x) dx.
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The right-hand side does not depend on i. Thus, the seller’s profit is the same between

E1 and E2 for every seller type. The buyer surplus is the same between E1 and E2 because

it is the total surplus from allocation rule q(·, ·) minus the seller’s profit, neither of which

depends on i.

Proof of Proposition 2

Take any signal, I. For any signal realization, the optimal algorithm induces a trade

if and only if v ≥ Γ(c). Hence, the ex post allocation of the product is independent of

the signal, as is the total surplus. Furthermore, the highest seller type c = 1 always

earns zero profits. Lemma 2 then implies that the seller profit of all types and the buyer

surplus are independent of the signal. □

Proof of Proposition 3

First, we show that as the signal becomes more informative, the distribution of prices

set by each active seller type undergoes a mean-preserving spread. To see this, consider

any signals IH and IL such that IH is more informative than IL. Recall that π̂H and

π̂L denote the respective ex ante distributions of the signal realizations.

Fix any active type c. For each α ∈ {L, H}, let Gc
α,s ∈ ∆[0, 1] denote the posterior

distribution of value v conditional on (i) signal s being realized under signal Iα and

(ii) v ≥ Γ(c). The equilibrium price of type c after observing signal realization s under

signal Iα is

p(c|s, α) ≜
∫ 1

0
Γ−1(v)dGc

α,s(v). (15)

Let Gc
α ∈ ∆∆[0, 1] denote the distribution of posteriors Gc

α,s for a fixed c. Specifically,

Gc
α is the distribution of random variable Gc

α,s with s ∼ π̂α. Because signal IH is

more informative than signal IL, Gc
H is a mean-preserving spread of Gc

L.19 As the price is

linear in posterior Gc
α,s, the mean-preserving spread relation between the distributions of

19Distribution GH of posteriors being a mean-preserving spread of GL means that there exist ∆[0, 1]-
valued random variables ZH and ZL such that ZH ∼ GH , ZL ∼ GL and E(ZH | ZL) = ZL.
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posteriors, Gc
H and Gc

L, imply the mean-preserving spread relation between real-valued

random variables p(c|s, H) and p(c|s, L). Therefore, we conclude that p(c|s, H) with

s ∼ π̂H is a mean-preserving spread of p(c|s, L) with s ∼ π̂L. Therefore, the distribution

of prices set by each active type under signal IH is a mean-preserving spread of the price

distribution under signal IL.

Second, we establish the results on monotone partitions. In what follows, we view

a monotone partitional signal as a partition of [0, 1] and use an “interval” to mean an

interval with a positive length, excluding a singleton set.

Take any monotone partitional signals, IH and IL, such that IH is finer than IL.

We can create partition IH by applying the following operations finitely many times to

partition IL: (i) taking an interval from IL and dividing it into two subintervals or (ii)

taking an interval from IL and fully revealing the values within it. The latter operation

means partitioning interval [a, b] into {{v}}v∈[a,b]. To obtain our result, it suffices to

show that applying (i) or (ii) to any given monotone partitional signal leads to a mean-

preserving contraction of the buyer surplus at any seller type. We consider these two

operations in turn.

Operation (i). Fix any monotone partitional signal I that is different from the fully

informative signal. Suppose that we take interval [vi, vi+1] from I and split it into

[vi, v̂] and [v̂, vi+1] for some v̂ ∈ (vi, vi+1). We show that after this partitioning, the

buyer surplus w(v, c), when we fix c but draw v from G, undergoes a mean-preserving

contraction.

First, we consider the values and types that are affected by the operation, i.e., (v, c)

such that Γ(c) ≤ v < vi+1. Before the operation, the buyer’s ex post payoff is

w0(v, c) ≜ v − Eṽ∼G[Γ−1(ṽ)|ṽ ∈ [Γ(c), vi+1]], ∀v ∈ [Γ(c), vi+1].
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After the operation, the buyer’s ex post payoff is

w1(v, c) ≜


v − Eṽ∼G[Γ−1(ṽ)|ṽ ∈ [Γ(c), v̂]] if v ∈ [Γ(c), v̂],

v − Eṽ∼G[Γ−1(ṽ)|ṽ ∈ [v̂, vi+1]] if v ∈ [v̂, vi+1].

Note that by applying Operation (i), the ex post payoff of the buyer with value v ∈

[Γ(c), v̂] increases because of the lower price and that of v ∈ [v̂, vi+1] decreases because

of the higher price.

For each k ∈ {0, 1}, consider the distribution of wk(v, c) when v ∼ G(·|ṽ ∈ [Γ(c), vi+1]).

First, they have the same mean because the expected price remains the same before and

after the operation. Second, because w1(·, c) crosses w0(·, c) once from above, the CDF

of w1(v, c) crosses the CDF of w0(v, c) once from above. The equal mean property and

the single-crossing property imply, by Theorem 3.A.44 (Condition 3.A.59) of Shaked

and Shanthikumar (2007), that w0(v, c) is a mean-preserving spread of w1(v, c) when

v ∼ G(·|ṽ ∈ [Γ(c), vi+1]).

Therefore, for a fixed c, the buyer’s ex post surplus conditional on v ∈ [Γ(c), vi+1]

under signal IL is a mean-preserving spread of that under signal IH . The same relation-

ship trivially holds for the ex post surpluses of value v < Γ(c) or v > vi+1 because those

types do not trade or continue to face the same price. In summary, for any fixed c, the

buyer’s ex post surplus under signal IL is a mean-preserving spread of that under signal

IH conditional on each of the three cases, v ∈ [Γ(c), vi+1], v < Γ(c), and v > vi+1. The

mean-preserving spread relationship is closed under mixtures (e.g., Theorem 3.A.12(b)

of Shaked and Shanthikumar (2007)). Thus, for any fixed c, the distribution of the

buyer’s surplus under signal IL is a mean-preserving spread of the distribution of the

buyer’s surplus under signal IH .

Operation (ii). We can apply the same logic as the case of Operation (i) by defining

w1(v, c) as

w1(v, c) ≜ v − Γ−1(v), ∀v ∈ [vi, vi+1].
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□

D Proofs of Proposition 5 and Proposition 6

We prove a result that implies both Propositions 5 and 6 as corollaries. Assume that

the sellers face an information structure I = (S, π) that consists of a set S = ×jSj of

signal realizations sj ∈ Sj privately observed by each seller and a family of probability

distributions {π(·|v)}v∈[0,1]J over S. We write s̃j for seller j’s signal as a random variable

and sj ∈ Sj for a generic realization.

Denote the set of real sellers by J ≜ {1, ..., J} and the set of all sellers, together

with a dummy seller, by J0 ≜ {0, 1, ..., J}. When we say that the buyer purchases from

(or transacts with) seller 0, it means that the buyer does not purchase from any seller

j = 1, ..., J . The profiles of the signal realizations, values, types, and prices are denoted

as s, v, c, and p, respectively. When we refer to a profile that excludes seller j, we use

notations such as s−j and v−j. With a slight abuse of notation, we write F , G, F−j, and

G−j, for the distributions of c, v, c−j, and v−j, respectively. Unless otherwise stated,

these vectors and joint distributions exclude the dummy seller.

Recall that we defined an auxiliary random variable

θj = vj − max
k∈J0\{j}

{vk − Γk(ck)}.

For each j, let vj(sj) be the supremum of the support of the posterior distribution of

vj conditional on s̃j = sj. Define cj(sj) = Γ−1
j (vj(sj)). For each j ∈ J , sj ∈ Sj, and

cj ∈ [0, cj(sj)], define

p∗
j(cj, sj) ≜ Eθj

[Γ−1
j

(
θj

)
| θj ≥ Γj(cj), s̃j = sj]. (16)

The conditional expectation is well-defined for any cj ≤ cj(sj) or equivalently Γj(cj) ≤

vj(sj) because θj = vj(sj) is in the support of the posterior distribution of vj conditional

on s̃j = sj. This is because vj = vj(sj) is in the support, and vk ≤ Γk(ck) for all k ̸= j

could occur with a positive probability. Given signal realizations s, we say that seller
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j’s type cj is active if cj ≤ cj(sj). Otherwise, the type is inactive. Seller j’s price pj is

said to be active if pj is in the range of p∗
j(·, sj); otherwise, the price is called inactive.

Note that any active type sets an active price.

In this appendix, for simplicity, we focus on the case in which for each seller j

and active price pj, there exists a unique type, denoted by p∗
j

−1(pj, sj), that solves

p∗
j(cj, sj) = pj. This is the case, for example, if value vj has a full support on [0, 1]

conditional on each signal realization sj. The proof for the case in which multiple types

may set the same price is relegated to the Supplementary Material.20 For any inactive

price, we set p∗
j

−1(pj, sj) = 1; for the dummy seller j = 0, we set p∗
j

−1(pj, sj) = 0.

We now define an algorithm that we will prove to be optimal for the buyer.

Definition 3. Define the candidate algorithm as follows: At each profile of signal real-

izations s = (s1, ..., sJ), values v = (v1, ..., vJ), and prices p = (p1, ..., pJ), the candidate

algorithm recommends trading with seller j∗(v, p, s) such that

j∗(v, p, s) ∈ argmax
j∈J0

vj − Γj

(
p∗

j
−1(pj, sj)

)
. (17)

If multiple sellers attain the maximized value in Equation 17, the algorithm breaks ties

in favor of sellers such that p∗
j

−1(pj, sj) > 0. Other than this restriction, ties are broken

arbitrarily.

The following result characterizes the buyer-optimal algorithm and equilibrium under

any information structure.

Proposition 10 (Market Segmentation with Competing Sellers). For any infor-

mation structure I, the corresponding candidate algorithm is a buyer-optimal algorithm.

In equilibrium, seller j of type cj ≤ cj(sj) posts price p∗
j(cj, sj), and any type cj > cj(sj)

sets some inactive price above 1. Under this algorithm and pricing, for any realized

profile of values and costs, the buyer trades with seller j∗ ∈ argmaxj∈J0 vj − Γj(cj).

20Multiple active types may set the same price if, for example, the signal is such that the support of
the posterior distribution for vj is non-convex for some signal realizations.
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Moreover, the profit of any seller of any type and the total buyer surplus are indepen-

dent of I.

Proof. The proof consists of three steps.

Step 1: Characterizing a buyer-optimal direct mechanism. First, we derive a buyer-

optimal direct mechanism, where the direct mechanism is in the sense of Myerson (1981),

i.e., a mechanism that fully controls product allocation and transfers across all players.

By the revelation principle, since any information structure combined with an algorithm

can be viewed as an indirect mechanism, a buyer-optimal mechanism must achieve a

weakly higher buyer surplus than a buyer-optimal algorithm under any information

structure.

Given a profile of values v and reported types c, let qj(v, c) be the probability of

allocating seller j’s product to the buyer, and let tj(v, c) be the monetary transfer from

the buyer to seller j. The direct mechanism design problem can be written as:

max
q:[0,1]2J →[0,1], t:[0,1]2J →R

J∑
j=1

∫
[0,1]J

∫
[0,1]J

(vjqj(v, c) − tj(v, c)) dFdG (18)

s.t. Tj(cj) − cjQj(cj) ≥ Tj(c′
j) − cjQj(c′

j), ∀ j ∈ J , cj, c′
j ∈ [0, 1],

Tj(cj) − cjQj(cj) ≥ 0, ∀ j ∈ J , cj, c′
j ∈ [0, 1],

Qj(cj) =
∫

[0,1]J

∫
[0,1]J−1

qj(v, cj, c−j) dF−jdG, ∀ j ∈ J , cj ∈ [0, 1],

Tj(cj) =
∫

[0,1]J

∫
[0,1]J−1

tj(v, cj, c−j) dF−jdG, ∀ j ∈ J , cj ∈ [0, 1],
∑
j∈J

qj(v, c) ≤ 1, ∀ v, c ∈ [0, 1]J .

The standard mechanism design arguments imply that only the participation constraint

of cj = 1 for each seller j binds at the optimum, and that the IC constraints are

equivalent to the local IC constraints (see Equation 19 below) with Qj(·) being weakly

decreasing for each j (cf. Baron and Myerson (1982)). Using the local IC constraints,
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we can rewrite the expected transfer as follows:

J∑
j=1

∫
[0,1]J

∫
[0,1]J

tj(v, c) dFdG =
J∑

j=1

∫ 1

0
Tj(x)fj(x) dx

=
J∑

j=1

∫ 1

0

(
x + Fj(x)

fj(x)

)
Qj(x)f(x) dx

=
J∑

j=1

∫ 1

0
Γj(x)Qj(x)f(x) dx.

Plugging this into the objective and using Qj(x) =
∫

[0,1]J
∫

[0,1]J−1 qj(v, x, c−j) dF−jdG, we

can rewrite the designer’s problem as the choice of a product allocation rule to maximize

virtual surplus:

∫
[0,1]J

∫
[0,1]J

J∑
j=1

(vj − Γj(cj)) qj(v, c)f(c) dc dG.

We can maximize the virtual surplus by choosing {qj(v, c)}j∈J to maximize the inte-

grand for each (v, c). The optimal mechanism allocates seller j’s product to the buyer,

qj(v, c) = 1, if seller j has the highest virtual surplus vj − Γj (cj) and it is nonnegative;

otherwise, qj(v, c) = 0. Let qD be this optimal product allocation rule and QD
j (cj) be the

interim allocation probability for seller j with type cj. Under the optimal mechanism,

the monetary transfer T D must satisfy

T D
j (cj) = QD(cj)cj +

∫ 1

cj

QD
j (x) dx, ∀cj ∈ [0, 1]. (19)

Under the optimal mechanism, the participation constraints for the highest types bind

and thus each seller j with the type cj = 1 earns zero profit.

Step 2: Connecting with the candidate algorithm. In this step, we show that the candi-

date algorithm has an equilibrium in which the product allocation rule and the profits

of the highest types are the same as those in the optimal direct mechanism.

First, suppose that each seller follows the pricing strategy described in the propo-

sition. Take any profile of signal realizations s, values v, and types (ĉ1, ..., ĉJ). Let p
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be the resulting price profile posted by the sellers. For each seller that posts an active

price pj, the candidate algorithm calculates the unique type that sets price pj accord-

ing to Equation 16 and recommends a seller that maximizes virtual surplus. Also, the

candidate algorithm never recommends a seller that sets an inactive price, because their

corresponding virtual surplus is always negative. Thus if all sellers use the pricing rule

in Equation 16 and the buyer always follows the recommendations, then for any profile

of prices that can arise, the candidate algorithm recommends the product of the seller

with the highest virtual surplus and thus induces the same product allocation as the

buyer-optimal mechanism. In particular, the buyer never purchases the product from a

seller who has a negative virtual surplus, which means that seller j with cj = 1 earns

zero profit.

We now show that the pricing rule in Equation 16 is indeed an equilibrium if the

buyer always purchases the recommended product. Take any active seller j ∈ J with

type cj. The seller cannot profit from setting an inactive price, because the candidate

algorithm never recommends a seller at an inactive price. Alternatively, suppose that

the seller has type cj but deviates to an active price which would be chosen by type c′
j.

Let H be the distribution of Γ−1
j (θj) conditional on s̃j = sj. We can compare the profits

without and with the deviation as follows:

Pr(Γ−1
j (θj) − cj ≥ 0|s̃j = sj) · Eθj

[Γ−1
j

(
θj

)
− cj | Γ−1

j (θj) − cj ≥ 0, s̃j = sj]

=
∫ 1

cj

(x − cj)dH(x)

≥
∫ 1

c′
j

(x − cj)dH(x)

= Pr(Γ−1
j (θj) − c′

j ≥ 0|s̃j = sj) · Eθj
[Γ−1

j

(
θj

)
− cj | Γ−1

j (θj) − c′
j ≥ 0, s̃j = sj]

Here, the first line is the profit from following the candidate strategy, and the last line

is the profit from deviation.

The other case is when a deviating seller j has an inactive type cj. In this case,

conditional on sj, any possible realization of θj satisfies Γj(cj) > θj. Thus, the profit from
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the deviation to active type c′
j, which is given by the last line of the above inequalities,

will be negative. We conclude that each seller has no profitable deviation.

The last part of this step is to show that the buyer is willing to purchase the product

whenever recommended, i.e., conditional on knowing the identity and the price of the

recommended product. We present a substantially stronger statement: The buyer is

willing to follow recommendations even if she additionally observes the realized signal

sj and the type cj of the recommended seller j. For each cj, we have:

E
[
vj

∣∣∣∣ vj − Γj(cj) ≥ max
k∈J0\{j}

vk − Γk(ck), s̃j = sj

]

=E
[
vj

∣∣∣∣Γ−1 (θj) ≥ cj, s̃j = sj

]
≥E

[
Γ−1

j (θj)
∣∣∣∣Γ−1 (θj) ≥ cj, s̃j = sj

]
=p∗

j(cj, sj),

where the inequality holds because:

vj ≥ θj = vj − max
k∈J0\{j}

{vk − Γk(ck)} ≥ Γ−1
j (θj).

Step 3: Establishing the “payoff equivalence.” Let {(Qj(cj), Tj(cj)}j∈J ,cj∈[0,1] be the in-

terim allocation probability Qj(cj) and expected revenue Tj(cj) for each seller j and

type cj under the candidate algorithm. Recall that {(QD
j (cj), T D

j (cj)}j∈J ,cj∈[0,1] denote

the corresponding objects in the optimal direct mechanism.

We have shown that (i) {(Qj(cj), Tj(cj)}j∈J ,cj∈[0,1] is an equilibrium object and thus

satisfies the first two constraints of Equation 18, i.e., the incentive compatibility and

participation constraints; (ii) in the candidate algorithm, the profits of the highest seller

types are 0; and (iii) Qj = QD
j for each seller j because they come from the same ex

post product allocation rule. Thus, the interim expected revenue of each seller j under
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the candidate algorithm must satisfy

Tj(cj) = Q(cj)cj +
∫ 1

cj

Qj(x)dx

= QD(cj)cj +
∫ 1

cj

QD
j (x)dx

= T D
j (cj),

where the first equality comes from (i) and (ii), the second from (iii), and the third from

Equation 19. Therefore, the interim profit of each seller, Tj(cj) − Q(cj)cj, is the same

between the candidate algorithm and the optimal mechanism. As a result, the buyer

surplus, which is the total surplus (uniquely determined by qD) minus the seller profit, is

the same between the algorithm described in the statement and the optimal mechanism

in Step 1.

Proofs of Proposition 5 and Proposition 6 Proposition 5 holds by setting in-

formation structure I to the uninformative structure, e.g., Sj = {∅} for each seller j.

Proposition 6 is a direct corollary of Proposition 10. □

E Proof of Proposition 9

We borrow the notation from the proof of Proposition 1 and let µ = Ev∼G[v]. Suppose

that the buyer faces the optimal algorithm of Proposition 1. Because the buyer is will-

ing to follow the algorithm’s recommendation to purchase, it suffices to show that the

buyer is also willing to follow the recommendation to not purchase. This constraint is

equivalent to the condition that the buyer’s ex ante payoff from following the recom-

mendation weakly exceeds the payoff from always buying the product regardless of the

recommendation. For any active price p ∈ [0, p(c)), the condition is written as

V (q(c)) − t(c) ≥ µ − p(c)
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or

V (q(c)) − cq(c) −
∫ 1

c
q(x)dx ≥ µ − c −

∫ 1
c q(x)dx

q(c) . (20)

Because q(c) ≤ 1, a sufficient condition for inequality (20) is

V (q(c)) − cq(c) ≥ µ − c.

We can rewrite this inequality as

∫ 1

Γ(c)
vdG(v) − c

∫ 1

Γ(c)
1dG(v) ≥

∫ 1

0
vdG(v) − c

∫ 1

0
1dG(v),

or, equivalently, ∫ Γ(c)

0
[v − c]dG(v) ≤ 0.

Finally, the buyer follows the recommendation to not buy the product at any price

p that is not active, i.e., p ≥ p∗(c). Recall that the buyer-optimal algorithm provides no

information about v at price p > p∗(c). Plugging c = c into
∫ Γ(c)

0 [v − c]dG(v) ≤ 0, we

obtain µ − c ≤ 0. Thus, if p > p∗(c), we have µ − p ≤ µ − p∗(c) = µ − c ≤ 0. □
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Supplementary Material for Appendix D

In the appendix, we assumed that each active price is posted by a unique type. In

this Supplementary Material, we drop this assumption and prove that the candidate

algorithm continues to maximize virtual surplus.

Recall the pricing equation (Equation 16). For each j ∈ J , sj ∈ Sj, and active price

pj ∈ R, define

Cj(pj, sj) ≜ {cj ∈ [0, 1] : p∗
j(cj, sj) = pj}

as the set of the types of seller j that choose price pj. For each pj, we define function

p∗
j

−1(pj, sj) as follows: For each j ∈ J ,

p∗
j

−1(pj, sj) =


max Cj(pj, sj) if Cj(pj, sj) ̸= ∅

1 if Cj(pj, sj) = ∅.

For the dummy seller j = 0, we set p∗
j

−1(pj, sj) = 0.

Suppose that each seller follows the pricing strategy described in the proposition.

Take any profile of signal realizations s, values v, and types (ĉ1, ..., ĉJ). Let p be the

resulting price profile posted by the sellers. Suppose that the candidate algorithm rec-

ommends seller j∗ ∈ J . Without loss, assume j∗ = 1. We show that seller 1 has the

highest, nonnegative virtual surplus. For each seller j ∈ J , there exists some cj such

that

vj − Γj

(
p∗

j
−1(pj, sj)

)
= vj − Γj(cj). (21)

If pj is an active price, cj = max Cj(pj, sj). If pj is an inactive price, cj = 1 by

construction. Let cj(pj) be the type that satisfies Equation 21. Then Equation 17

implies that

v1 − Γ1 (c1(p1)) ≥ max
k∈J0\{1}

vk − Γk (ck(pk)) , (22)

so that seller 1 has the largest virtual surplus under type profile (c1(p1), ..., cJ(pJ)). The

rest of the proof is devoted to showing that seller 1 has the largest virtual surplus under
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type profile (ĉ1, ..., ĉJ) as well, i.e.,

v1 − Γ1 (ĉ1) ≥ max
k∈J0\{1}

vk − Γk (ĉk) . (23)

Note that if pk is inactive for some non-recommended seller k, any type ĉk that sets

pk satisfies ĉk > ck(sk), which implies vk − Γk (ĉk) < 0. Thus, replacing one inactive

type ck(pk) with another inactive type ĉk in the RHS of Equation 23 does not affect the

inequality (and it does not affect the argument below).21 Thus, to simplify exposition,

we assume that all sellers set active prices, or equivalently, ck(pk) ≤ ck(sk) for each

k ∈ J . We change the type of each seller from cj(pj) to ĉj one by one and show that

seller 1 continues to maximize virtual surplus at each step.

First, suppose that we change the type of seller 1 from c1(p1) to ĉ1. Because c1(p1) =

max C1(p1, s1), we have c1(p1) ≥ ĉ1. Therefore, we obtain

v1 − Γ1 (ĉ1) ≥ max
k∈J0\{1}

vk − Γk (ck(pk)) . (24)

Next, for each seller ℓ = 2, ..., J , we replace cℓ(pℓ) in the RHS of Equation 24 with

another active type ĉℓ ̸= cℓ(pℓ) that sets the same price pℓ, and show that the inequality

is preserved. To begin with, for a given ℓ ≥ 2, we consider the following inequalities:

v1−Γ1 (ĉ1) ≥ max
{

max
k∈{2,3...,ℓ−1}

vk − Γk (ĉk) , vℓ − Γℓ (cℓ(pℓ)) , max
k∈{ℓ+1,...,J,0}

vk − Γk (ck(pk))
}

,

(25)

where we ignore maxk∈{2,3...,ℓ−1} vk − Γk (ĉk) when ℓ = 2, and

max
{

max
k∈{1,...,ℓ−1}

vk − Γk (ĉk) , max
k∈{ℓ+1,...,J,0}

vk − Γk (ck(pk))
}

< vℓ − Γℓ (ĉℓ) . (26)

Equation 25 means that seller 1 continues to maximize virtual surplus after we change the

type of each seller k ≤ ℓ − 1 from ck(pk) to ĉk. Equation 26 means that the inequality is

21This argument also implies that if the candidate algorithm does not recommend any seller at a
given price profile, then under any type profile that is consistent with the price profile, all the sellers
have non-positive virtual surplus.
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reversed after we replace the type of seller ℓ. When we consider a version of Equation 25

in which we replace ℓ with k′, we refer to the inequality as Equation 25(k′). Note that

Equation 25(ℓ) is Equation 25, and we have already shown that Equation 25(2) holds.

We also consider the following inequalities:

max
k∈J0\{ℓ}

vk − Γk (ck) > vℓ − Γℓ (cℓ(pℓ)) (27)

and

max
k∈J0\{ℓ}

vk − Γk (ck) < vℓ − Γℓ (ĉℓ) . (28)

We will show that if Equation 25 and Equation 26 hold, then Equation 27 and Equa-

tion 28 hold for a positive measure of type profiles c−ℓ, which, as we show, leads to a

contradiction.

For each ℓ ≥ 2, assume that Equation 25(k′) for k′ = 2, ...., ℓ and Equation 26 hold.

Note that Equation 26 implies cℓ(pℓ) > ĉℓ ≥ 0. Thus, we have cℓ(pℓ) > 0. We consider

four cases.

Case 1. First, suppose that (i) Equation 25 holds with strict inequality or (ii) ĉ1 > 0.

In either case, we can find a positive measure of type profiles c−ℓ such that Equation 27

and Equation 28 hold. For example, if ĉ1 > 0, then replacing ĉ1 with a slightly lower

ĉ1 − ϵ satisfies Equation 25 and Equation 26 with strict inequalities, because the virtual

cost functions are assumed to be continuous and strictly increasing. We can then find

a positive measure of type profiles c−ℓ that maintain these strict inequalities, leading to

Equation 27 and Equation 28 for a positive measure of c−ℓ (conditional on sℓ). This

is a contradiction, because the existence of such c−ℓ’s implies that there is a positive

measure of θℓ’s such that θℓ > Γℓ(cℓ(pℓ)) and θℓ < Γℓ(ĉℓ), i.e., types cℓ(pℓ) and ĉℓ set

different prices (see Equation 16).

Case 2. Suppose that (i) Equation 25(k′) holds with equality at every step k′ ≤ ℓ,

(ii) ĉ1 = 0, (iii) and the RHS of Equation 25 is positive. Note that Points (i) and (ii)

imply that c1(p1) = ĉ1 = 0, so seller 1 sets a price for which there is a unique active

type (to see this, note that if c1(p1) > ĉ1 and Equation 25(2) holds with equality, then
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Equation 22 would fail). This means that seller ℓ does not attain the maximized value

of the RHS in Equation 25, because if both sellers 1 and ℓ maximize virtual surplus and

ĉ1 = 0 < cℓ(pℓ), the candidate algorithm would recommend seller ℓ instead of seller 1

(see the tie-breaking rule described in Definition 3). Because the RHS of Equation 25 is

not determined by seller ℓ but both sides are positive, we can slightly increase the cost

of each seller k ̸= 1, ℓ to make Equation 25 and Equation 26 strict. We can then find a

positive measure of type profiles c−ℓ such that Equation 27 and Equation 28 hold, which

leads to a contradiction by the same argument as in Case 1.

Case 3. Suppose that (i) Equation 25 holds with equality but there is some step k′ < ℓ

at which Equation 25(k′) is strict, (ii) ĉ1 = 0, (iii) and the RHS of Equation 25 is

positive. Point (i) implies that there is some k′ ∈ {2, ..., ℓ−1} such that Equation 25(k′)

is strict but Equation 25(k′ + 1) holds with equality, which occurs only when the RHS

of the inequality increases as we move from Equation 25(k′) to Equation 25(k′ + 1).

It means that the RHS of Equation 25 is not determined by seller ℓ, whose type did

not change in earlier steps. By the same argument as Case 2, we can find type profiles

c−ℓ where Equation 25 and Equation 26 hold with strict inequalities, which leads to a

contradiction.

Case 4. Suppose that both sides of Equation 25 are 0, and ĉ1 = 0. Both sides of

Equation 25(k′) are 0 for every step k′ = 2, ..., ℓ, because after each replacement, the

LHS of Equation 25(k′) remains 0 and the RHS is weakly greater than 0. By the same

argument as in Case 2, we conclude that that seller ℓ does not attain the maximized

value of the RHS in Equation 25 (otherwise, seller ℓ would be recommended according

to the tie-breaking rule of the candidate algorithm). But it means that seller ℓ has a

negative virtual surplus, which is a contradiction.

In summary, we have shown that for any information structure, if all sellers use the

pricing rule in Equation 16 and the buyer always follows the recommendations, for any

profile of prices that can arise, the candidate algorithm recommends the product of the

seller with the highest virtual surplus. The rest of the proof follows the same argument

as in the appendix.
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