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Abstract

Agents decide whether to commit crimes based on their heterogeneous returns to

crime, or their types. Police have some information about these types and allocate

search capacity across the agents to uncover crimes. The police that have full informa-

tion about types fail to deter any crime, because the ability to predict crimes erodes

the deterrent effect of policing. The information structure that minimizes a crime rate

is only partially informative and never allows the police to identify who will commit

crimes, but it may reveal some of the agents who will not commit crimes.
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1 Introduction

Law enforcement agencies are increasingly relying on data and algorithms to predict crimes

(Perry, 2013; Brayne, 2020). They use a variety of data sources, such as criminal records,

social media posts, financial records, and local environmental information. Private vendors,

such as Palantir and PredPol, also offer predictive algorithms to police departments. This

trend, which is driven by the pursuit of more effective law enforcement, has raised a number

of concerns. As a case in point, the EU’s proposed regulation “Artificial Intelligence Act”

classifies a certain use of artificial intelligence to predict crime as a prohibited practice.1

Motivated by the recent discussion, I study how the information available to a law en-

forcement affects its ability to deter crimes. I examine this question from the perspective

of information design. The model consists of a unit mass of agents and a law enforcement,

which we call the “police.” The agents are potential criminals with heterogeneous types that

capture their returns to crimes. At the outset, the police observe information about the

type of each agent according to an exogenous signal structure. Each agent decides whether

to commit a crime, and simultaneously, the police allocate search resources across agents to

catch criminals. This simultaneous-move game captures a situation in which agents decide

whether to commit crimes—such as illegal parking, tax fraud, or drug trafficking—and then

a police officer or tax auditor tries to uncover crimes without directly observing the agents’

behavior.

I present three main results. The first result shows that maximal information leads

to maximal crime rate: If the police have full information about the agents’ types, every

agent commits a crime with probability 1 in any equilibrium. The fully informed police will

allocate search resources only to the agents who are most likely to commit crimes. This

search strategy fails to deter any crime: Each agent is either not searched at all, and thus

commits a crime, or is searched with a positive probability but still commits a crime as

predicted by the police. The result implies that for policing to have a deterrence role, we

may need to restrict the police’s information.

The second result characterizes the signal structure that minimizes a crime rate. To

1See https://www.europarl.europa.eu/news/en/press-room/20230609IPR96212/meps-ready-to-
negotiate-first-ever-rules-for-safe-and-transparent-ai.
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do so, I first solve a relaxed problem in which we jointly design the information available

to agents and the police. The relaxed problem has a solution where the police receive no

information and randomly search any agent with the same probability, whereas each agent

learns whether their type exceeds some cutoff. I then show that in the original problem where

the agents observe their types, we can construct a signal structure for the police that attains

the same outcome as in the relaxed problem. This crime-minimizing signal structure has

two properties. First, it enables the police to avoid excessive searches, i.e., in equilibrium,

no agent is searched with a probability strictly greater than what is required to deter their

crime. Second, the signal structure garbles the agents’ types to prevent the police from

predicting crimes, i.e., in equilibrium, the likelihood of crime is equalized across all possible

signals. The crime-minimizing signal structure is also amenable to comparative statics. For

example, it becomes less informative when the police have a lower search capacity or the

agents face greater returns to crime.

The above results assume that the police distribute a fixed search capacity across the

agents. The third result assumes that the police endogenously choose a total search capac-

ity at a cost: For example, an individual officer might exert different levels of search effort

depending on the available information. In such a case, the crime-minimizing signal struc-

ture may enable the police to identify some of the agents who will abstain from crimes in

equilibrium. Revealing some of these “innocents” could decrease a crime rate, because the

police who possess such information can more effectively allocate search resources and thus

choose a higher level of search effort. At the same time, the crime-minimizing signal struc-

ture never enables the police to identify agents who will commit crimes, because revealing

these “criminals” not only distorts the allocation of search resources—as shown in the first

two results—but also reduces the police’s search effort.

Overall, the paper offers a cautionary tale against the growing use of data and predictive

algorithms in law enforcement: Information can improve the allocation of search resources

but also erode the deterrence effect of law enforcement. The information structure that

strikes this balance may limit or even eliminate the ability of the law enforcer to predict

crimes. Moreover, the law enforcer may need to have less information when they have

limited resources or operate in an environment prone to crime.
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Related work. The paper relates to the literature on Bayesian persuasion and information

design (see Kamenica (2019) and Bergemann and Morris (2019) for surveys). Papers such

as Lazear (2006), Eeckhout, Persico, and Todd (2010), and Hernández and Neeman (2022)

use Bayesian persuasion and related tools to study the problem of disclosing information to

players who may take socially undesirable actions. In contrast, I study what information a

law enforcer should have about such players. Methodologically, the paper studies information

design problems with a continuum of players, states, and actions (for the police), which seems

to be less understood than a single-player Bayesian persuasion problem (see Smolin and

Yamashita (2022) for a discussion). The information design literature provides conditions

under which an optimal signal takes a tractable form, such as monotone partitional signals,

censorship policies, and nested intervals (e.g., Guo and Shmaya 2019; Dworczak and Martini

2019; Kolotilin, Mylovanov, and Zapechelnyuk 2022). The crime-minimizing signal structure

characterized in this paper does not belong to these classes of signals.

The paper also relates to the economic literature on crime and policing, which starts from

Becker (1968). The question of what information about agents should or should not be used

for policing is often discussed in the context of racial profiling (Knowles, Persico, and Todd

2001; Persico and Todd 2005; Bjerk 2007; Persico 2009). In terms of the timing and payoffs of

the game, my paper builds closely on Persico (2002), who studies whether requiring the police

to adopt a fairer search strategy reduces crime. Instead of constraints on police behavior, I

consider restrictions on information available to police and study what information renders

policing effective. A model of predictive enforcement is also studied by Che, Kim, and

Mierendorff (2023), who consider a bandit model that captures the endogenous generation

and use of information for law enforcement. To focus on the role of information in policing,

the model abstracts away from other important considerations, such as the design of judicial

systems, richer responses by potential criminals and victims, as well as the “fairness” of

predictive algorithms (e.g., Curry and Klumpp 2009; Cotton and Li 2015; Jung, Kannan,

Lee, Pai, Roth, and Vohra 2020; Vasquez 2022; Liang, Lu, and Mu 2022).
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2 Model

The model consists of police and a unit mass of agents indexed by i ∈ [0, 1]. Each agent i

has some underlying returns to crime, or type, xi ∈ [0, 1].2 Each agent observes their type.

We may interpret an agent’s type as reflecting the individual characteristics that affect

their returns to crime (e.g., legal earning opportunities) or crime opportunities specific to

certain locations or times. The agents’ types are independently and identically drawn from

distribution function F ∈ ∆[0, 1], which has a positive density f and is commonly known.3

We use EF [·] for the corresponding expectation operator. Also, we use F (·|x̃ ≤ c) for the

conditional distribution of F on [0, c] and EF [·|x̃ ≤ c] for the corresponding expectation

operator. We denote the uniform distribution over the interval [a, b] by U [a, b].

The police learn information about each agent’s type according to a signal structure

(S, π), which consists of a set S of signals and a collection π = {π(·|x)}x∈[0,1] of conditional

distributions π(·|x) over signals for each type x. For each agent i ∈ [0, 1], the police observe

a signal si ∈ S drawn according to distribution π(·|xi) ∈ ∆S. Conditional on types, signals

are independent across agents. The signal structure is exogenous and commonly known, but

only the police observe realized signals.

Given the signal structure, the police and the agents play the following simultaneous-

move game: Each agent decides whether or not to commit a crime, and simultaneously, the

police allocate search resources across agents. Specifically, the police choose a search strategy

p : S → [0, 1], where p(s) is the probability of searching agents with signal s ∈ S. The police

have a measure P ∈ (0, 1) of searches to allocate; thus the police can choose a search strategy

p(·) if and only if the total mass of searches does not exceed P , i.e.,

∫ 1

0

∫
S

p(s)π(ds|x)F (dx) ≤ P . (1)

For a given strategy profile, we use innocents for agents who commit crimes with probability

0 and criminals for agents who commit crimes with probability 1.

2For simplicity, I exclude types below 0 or above 1. Under the payoff specification presented below, such
agents are nonstrategic and their best responses do not depend on the police’s strategy.

3Given set X we write ∆X for the set of all probability distributions on X.
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An agent’s payoff of committing a crime is x−p, where x is the agent’s type and p ∈ [0, 1]

is the probability of being searched.4 An agent’s payoff of not committing a crime is 0. Thus

an agent commits a crime if and only if their type x exceeds the anticipated probability of

search. The police’s payoff is equal to the mass of successful searches, which is defined as the

mass of agents who commit crimes and are searched by the police. The literal interpretation

of the police’s payoff is that whenever the police search an agent who has indeed committed

a crime, the police earn a payoff of 1. The solution concept is Bayesian Nash equilibrium,

which we refer to as equilibrium.

To minimize possible case classifications, we assume that the primitives—i.e., the distri-

bution of returns to crime and the police’s search capacity—satisfy the following:

Assumption 1. The primitives, F and P , satisfy P <
∫ 1

0
xF (dx).

The assumption implies that under any signal structure and any equilibrium, a positive

mass of agents commit crimes. Indeed, the inequality P <
∫ 1

0
xF (dx) implies that the police

do not have enough search capacity to search each agent i with a probability of at least xi.

As a result, some agents, facing search probabilities below xi, prefer to commit crimes.

The main analysis focuses on two signal structures: One is a signal structure that provides

the police with full information about the agents’ types, i.e., a signal structure is such that

for every type x ∈ [0, 1], π(·|x) places probability 1 on s = x. The other is a signal structure

that minimizes a crime rate, defined as the mass of agents who commit crimes in equilibrium:

Definition 1. A crime-minimizing signal structure is a signal structure that has an equilib-

rium with the lowest crime rate across all signal structures and equilibria. The corresponding

equilibrium is called a crime-minimizing equilibrium.

We can view a crime-minimizing signal structure as the choice of a social planner who

internalizes the social cost of crime and regulates the information available to the police.

Crime minimization is different from the police’s objective, which is to maximize the number

of successful searches. The police’s objective is better interpreted as the preferences of

4We obtain qualitatively the same results when an agent’s payoff of committing a crime is, in line with
Persico (2002), (1− p)x− Lp, i.e., criminals enjoy their returns to crime if they are not searched and incur
a loss of L if they are searched. We adopt payoff x− p to simplify exposition.

5



individual officers or auditors who have career concerns and are rewarded for uncovering

crimes, as discussed below.

Remark 1 (Timing and Payoffs). The results of this paper hinge on the assumption

that the police and agents move simultaneously. In particular, the police cannot commit

to a search strategy in advance. Two reasons support this assumption. First, we view a

signal structure as a predictive algorithm used within a law enforcement agency. In such a

context, predictions generated by an algorithm (i.e., realized signals) would not be visible to

the public, making it difficult for the police to commit to a search strategy as a function of

realized signals. Second, in line with the literature on decentralized law enforcement, such

as Persico (2002) and Porto et al. (2013), we may view the “police” not as an organization

but as individuals such as law enforcement officers and tax auditors. The simultaneous-move

assumption then arises from the idea that the action of an individual officer does not directly

influence the decisions of potential criminals. Finally, the simultaneous-move assumption

offers a partial justification to the assumption that the police care about successful searches

but not a crime rate. Indeed, even if the police’s payoffs depend both on successful searches

and a crime rate, the simultaneous-move assumption implies that the police behave as if

they only care about successful searches, taking a crime rate as given.

3 Fully Informed Police

We begin with the analysis of the fully informed police, which we may interpret as reflecting

the consequence of unrestricted data collection by a law enforcement agency.

Theorem 1. If the police have full information, then in any equilibrium, almost every agent

commits a crime with probability 1.

Proof. Take any equilibrium. Assumption 1 implies that the police cannot search every type

x with a probability weakly above x. Hence a positive mass of types who expect search

probabilities strictly below their types commit crimes with probability 1. If another positive

mass of types commit crimes with probability strictly below 1, the police could increase
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successful searches by shifting search probabilities away from these types to the types who

surely commit crimes. This is a contradiction, so almost every agent commits a crime.

The result captures the idea that the police’s ability to predict crimes—combined with

their incentive to uncover crimes and a lack of commitment in search strategy—eliminates

the deterrence effect of policing. For example, suppose that F = U [0, 1] and P = 1
4
. If the

police have no information, every agent faces search probability P , so the equilibrium crime

rate is 1− F (P ) = 3
4
. In contrast, when the police have full information, there are multiple

equilibria, all of which have crime rate 1: In one equilibrium, the police adopt search strategy

p(x) = x
2
for every x ∈ [0, 1]. Given this search strategy, all agents strictly prefer to commit

crimes. Moreover, because every agent is equally likely to be committing a crime, the police

are indifferent across all search strategies that exhaust search capacity P , which includes

search strategy p. In another equilibrium, the police search type x ≤ 1√
2
with probability

x and do not search any type x > 1√
2
. In this equilibrium, each type x ≤ 1√

2
is indifferent

yet commits a crime with probability 1. It cannot be an equilibrium if some agents break

ties and do not commit a crime, because the police would then redirect their search toward

types above 1√
2
.

4 Crime-Minimizing Signal Structure

Having established that restricting the police’s information is necessary for crime deterrence,

we turn to the question of what signal structure minimizes a crime rate. The analysis consists

of two steps. First, we study a “relaxed problem,” in which we minimize a crime rate by

designing a joint information structure for the police and the agents. We show that the

solution to this problem is to disclose no information to the police and reveal the agents

whether their types exceed a cutoff. The resulting crime rate becomes a lower bound of the

possible crime rates in the original problem, in which the agents observe their types. Second,

we turn to the original setup and construct a signal structure that attains this lower bound.
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4.1 Relaxed Problem

To define the relaxed problem, we modify the model as follows: The agents do not directly

observe their types. Instead, the information of the agents and the police is determined by an

extended signal structure, (SP , SA, π). Here, SP and SA are the sets of signals for the police

and agents, respectively, and π = {π(·|x)}x∈[0,1] is the collection of conditional probability

distributions on SP × SA for each type. If agent i has type xi, the police observe sPi and

agent i observes sAi , where (sPi , s
A
i ) ∼ π(·|xi). The rest of the game remains the same: Each

agent observes sAi and decides whether to commit a crime, and simultaneously, the police

choose a search strategy to maximize successful searches. The following result characterizes

a crime-minimizing extended signal structure.

Lemma 1. In the relaxed problem, the following extended signal structure minimizes a crime

rate: The police learn no information, e.g., SP = {ϕ}, and each agent learns whether their

type exceeds cutoff ĉ ∈ (0, 1) that uniquely solves

EF [x̃|x̃ ≤ ĉ] = P . (2)

In equilibrium, the police search every agent with probability P , and each agent commits a

crime if and only if their type exceeds ĉ.

Proof. Take any extended signal structure and any equilibrium. The proof consists of three

steps. First, by the “revelation principle” of information design (e.g., Bergemann and Morris

2019), we can replace the agents’ signals with action recommendations.5 Specifically, we

set SA = {crime, not} and assume that in equilibrium, each agent commits a crime after

observing signal crime and not after observing signal not.

Second, we replace the police’s signal with an uninformative signal, e.g., SP = {ϕ}. This

weakly decreases search probabilities allocated to signal crime, because the police aim to

5Formally, take any extended signal structure and equilibrium. Let ai(y) be the equilibrium probability
that agent i takes action a ∈ {crime, not} after observing signal y ∈ SA; πAP (·|x, S) be the conditional
distribution of an agent’s signal when their type is x and the police’s signal is in S; and πP (·|x) be the
conditional distribution of the police’s signal given type x. We define the new signal structure as π̂(S ×
{a}|x) = πP (S|x)

∫ 1

0

∫
SA

ai(y)πAP (dy|x, S)di for each S ⊂ SP and action recommendation a ∈ {crime, not}.
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maximize successful searches. As a result, the obedience constraints get relaxed, ensuring

that the agents continue to follow action recommendations.6

The relaxed problem now reduces to Bayesian persuasion: An agent receives a payoff of

x−P from committing a crime, and we disclose information about type x ∼ F (in the form

of action recommendations) to the agent in order to minimize the probability of committing

a crime. As shown in Kamenica and Gentzkow (2011), the solution is to disclose whether

type x exceeds a cutoff ĉ defined by EF [x̃|x̃ ≤ ĉ] = P . Type distribution has a density and

satisfies Assumption 1, so the cutoff ĉ ∈ (0, 1) exists and is unique.

Lemma 1 implies that in our original setup, the minimum crime rate is attained if all

types below ĉ do not commit crimes. Such an outcome cannot arise if the agents observe

their types but the police have no information, because the resulting random search induces

types between P and ĉ to commit crimes. However, the next section shows that we can

provide the police with partial information to attain the same crime rate.

4.2 Characterizing the Crime-Minimizing Signal Structure

We now turn to the original setup, in which the agents observe their types. First, we define

a class of signal structures:

Definition 2. For each c ∈ (0, 1), the truth-or-noise signal structure with cutoff c, denoted

by (Sc, πc), is the following signal structure: The signal space Sc is [0, c]; for each x ≤ c,

distribution πc(·|x) draws s = x with probability 1; and for any x > c, distribution πc(·|x) is

independent of x and equals F (·|x̃ ≤ c).

To better understand the truth-or-noise signal structures, consider the police’s posterior

belief on types induced by a signal generated by (Sc, πc) (see Figure 1). The signal can be

the “truth” (i.e., an agent’s type is below c and the signal is equal to their true type) or

a “noise” (i.e., an agent’s type is above c and the signal is a realization of a random draw

from F (·|x̃ ≤ c)). As a result, the posterior belief places positive probabilities both on types

6The obedience constraint for signal crime (resp. signal not) is that an agent’s expected payoff from
committing a crime conditional on signal crime is non-negative (resp. non-positive). When we simply say
the obedience constraints, they refer to the constraints for both signals.
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below and above c. Specifically, the posterior induced by signal s ∈ [0, c] contains a point

mass F (c) of type s and a mass 1− F (c) of types distributed according to F (·|x̃ > c). The

posterior beliefs (indexed by their point masses) are distributed according to F (·|x̃ ≤ c), so

they average to prior distribution F .

type x
0 c 1

Gs1

x = s1

mass F (c)
x ∼ F (·|x̃ > c)

Gs2

x = s2

Figure 1: Posterior distribution Gs of types conditional on signal s = s1, s2 under (Sc, πc).

Theorem 2. Let ĉ denote the cutoff defined by equation (2). The truth-or-noise signal

structure with cutoff ĉ is a crime-minimizing signal structure.

Proof. It suffices to show that signal structure (Sĉ, πĉ) has an equilibrium in which types

above ĉ commit crimes and types below ĉ do not. Consider the following strategy profile:

The police adopt search strategy p∗(s) = s for every s ∈ [0, ĉ], and each agent commits a

crime if and only if their type exceeds ĉ. We show that this strategy profile is an equilibrium.

First, from the police’s perspective, each agent is committing a crime with probability 1−F (ĉ)

conditional on any signal. Thus the police are indifferent across all search strategies that

exhaust search capacity P . Search strategy p∗ indeed exhausts the search capacity because

of equation (2), i.e., P = EF [x̃|x̃ ≤ ĉ]. The strategy of each agent is also optimal: Any

agent with type x ≤ ĉ knows that the police will observe signal s = x and search them with

probability x, so the agent is indifferent and be willing to abstain from a crime. Agents with

types above ĉ will be searched with probability at most ĉ, so they commit crimes. Hence the

strategy profile described above is an equilibrium.

The crime-minimizing signal structure has two properties: First, it prevents the police

from predicting crimes by equalizing the likelihood of crime across all signals. This property
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minimizes the distortion highlighted by Theorem 1, where the police focus their search

resources on agents most likely to commit crimes. Various signal structures have this first

property, including the one that discloses no information. The second property of the crime-

minimizing signal structure is that it reveals partial information and enables the police

to reduce wasteful searches: Under the crime-minimizing signal structure, the signals are

differentiated according to the lowest possible types, and the equilibrium search rates are

tailored to these types. Hence the police will never search agents with a probability greater

than what is minimally necessary to deter crimes.

The crime-minimizing signal structure admits the following comparative statics:

Corollary 1. The crime-minimizing signal structure in Theorem 2 becomes less Blackwell

informative if (i) search capacity P is smaller or (ii) type distribution F is greater in the

likelihood ratio order.7

Proof. For Part (i), suppose that search capacity decreases from P 2 to P 1. Let (S
∗
1 , π

∗
1) and

(S∗
2 , π

∗
2) denote the respective crime-minimizing signal structures. Equation (2) implies that

cutoff ĉ2 under P 2 is greater than cutoff ĉ1 under P 1. We can use this property to show

that (S∗
2 , π

∗
2) is more informative than (S∗

1 , π
∗
1). Indeed, we can replicate (S∗

1 , π
∗
1) by garbling

signals drawn from (S∗
2 , π

∗
2) so that whenever a signal drawn from (S∗

2 , π
∗
2) falls in the interval

(ĉ1, ĉ2], we redraw a new signal randomly from distribution F (·|x̃ ≤ ĉ1). For Part (ii), note

that as F increases in the likelihood ratio order, the right-hand side of equation (2) (i.e.,

P = EF [x̃|x̃ ≤ ĉ]) increases.8 To maintain the equality, cutoff ĉ must decrease. By the

same argument as the proof of Part (i), the decrease in the cutoff implies a less informative

crime-minimizing signal structure.

Corollary 1 implies that when the environment is more prone to crime, the police should

have less information for the maximum crime deterrence. For example, if the police have

a lower search capacity, then everything else equal, more agents will commit crimes. The

7Take two type distributions, G and F , that have positive densities on [0, 1]. We say that distribution

G is greater than F in the likelihood ratio order if g(x)
f(x) increases in x.

8If G is greater than F in the likelihood ratio order, then for any measurable event A ⊂ [0, 1], G(·|x̃ ∈ A)
first-order stochastically dominates F (·|x̃ ∈ A) (see, e.g., Theorem 1.C.6 of Shaked and Shanthikumar
(2007)).
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police will then use information to identify agents who are more likely to commit crimes

and allocate a large fraction of scarce search resource to these agents. To mitigate this

distortion, the crime-minimizing information structure reveals less information to the police

and makes it harder to identify who face high returns to crime. The result counters the idea

that better prediction technology could partly compensate for the lack of physical resources

in law enforcement.9

5 Endogenous Search Capacity

We now study the case in which the police can increase the total number of searches at cost.

Formally, we assume that the police can choose any search strategy p at cost C(P ), where

P is the total mass of searches induced by p, i.e.,

P ≜
∫ 1

0

∫
S

p(s)π(ds|x)F (dx).

The cost function, C(·), is strictly increasing, strictly convex, differentiable, and satisfies

C ′(0) < 1 < C ′
(∫ 1

0
xF (dx)

)
.10 The police’s payoff is the mass of successful searches minus

cost C(P ). The rest of the model, such as the agents’ payoffs and the timing, remains the

same.

5.1 Relaxed Problem with Endogenous Search Capacity

First, we study the relaxed problem and solve for an extended signal structure (SP , SA, π)

that minimizes the equilibrium crime rate. Figure 2 describes the solution: Similar to

the case of the exogenous search capacity (Lemma 1), each agent receives signal crime or

not depending on whether their type exceeds some cutoff c∗, and in equilibrium, they follow

action recommendations. The police’s signal is a garbling of the agents’ signals. In particular,

9A police chief quoted in Pearsall (2010) says that a predictive policing algorithm “is the perfect tool to
help departments become more efficient as budgets continue to be reduced.”

10Under any signal structure and any equilibrium, the first inequality implies that the police search a
positive mass of agents, whereas the second inequality, which plays the same role as Assumption 1, ensures
a positive crime rate.
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the police privately identify and choose not to search a fraction α∗ of agents who receive

signal not. For the remaining population, the police apply the same search rate ρ∗ > 0.

types
0 c∗ 1

Each agent’s signal
= their action

not crime

α∗ 1− α∗

1
Police’s signal

= search probability
0 ρ∗

Figure 2: A solution to the relaxed problem with endogenous search capacity. The police
identify a fraction α∗ of innocents.

To simplify exposition, we prepare some terminologies (in what follows, we refer an

extended signal structure simply as a signal structure). Take any signal structure (SP , SA, π)

and the strategies of agents. For each s ∈ SP , its posterior crime rate, r(s) ∈ [0, 1] refers to

the probability with which an agent commits a crime conditional on the police’s signal s.11

The following lemma restricts the class of signals we need to consider:

Lemma 2. In the relaxed problem, take any signal structure and any equilibrium, denoting

its crime rate by r. There is some c ∈ [0, 1] such that the same crime rate arises under a

signal structure and an equilibrium with the following properties:

1. Each agent receives signal “crime” and signal “not” if x > c and x < c, respectively.

In equilibrium, the agents follow action recommendations.

2. The police’s signal is a garbling of an agent’s signal.12 In equilibrium, each signal of

the police leads to a distinct posterior crime rate.

11For every signal t ∈ SA of an agent, let a(t) be the average probability with which an agent commits
a crime after observing signal t. Then the posterior crime rate is equal to r(s) = E[a(t̃)|s], where the
expectation is with respect to an agent’s signal t̃ conditional on the police’s signal s.

12By “garbling,” we mean that there exist conditional distributions of the police’s signal given an agent’s
signal, i.e., πP (·|crime), πP (·|not) ∈ ∆SP , such that for any S ⊂ SP , a ∈ {crime, not}, and x ∈ [0, 1], we
have π(S×{a}|x) = πP (S|a)πA(a|x). Here, πA(s|x) is the probability of an agent’s signal being a conditional
on type x.
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Proof. Take any signal structure (S ′
P , S

′
A, π

′) and any equilibrium. Let p′ denote the police’s

equilibrium search strategy. First, as in Lemma 1, we can replace S ′
A with SA = {crime, not}

and assume that each agent follows the action recommendation in equilibrium.

Second, we replace each signal s′ ∈ S ′
P of the police with its posterior crime rate r(s′),

resulting in a new signal space, SP ⊂ [0, 1]. This replacement reduces the police’s information

because different signals may have the same posterior crime rate. We then assume that the

police adopt search strategy p(y) ≜ E[p′(s′)|r(s′) = y] for each y ∈ SP , where the expectation

is with respect to the police’s original signal s′ ∈ S ′
P conditional on posterior crime rate y.

The police find it optimal to adopt p because it ensures the same payoff as p′ despite having

less information. The agents’ incentives remain the same, because strategies p′ and p result

in the same expected search rates conditional on each signal in SA.

Finally, let π̂ ∈ ∆(SP × SA) denote the joint distribution of the police’s signal (i.e.,

posterior crime rate) and an agent’s signal (i.e., action recommendation). Let π̂(·|s) ∈ ∆SP

denote the associated conditional distribution of the police’s signal given an agent’s signal s ∈

{crime, not}. We modify the signal structure as follows. First, given equilibrium crime rate

r ∈ [0, 1], we assume that types above and below cutoff c ≜ F−1(1− r) receive signals crime

and not, respectively. This modification relaxes the obedience constraints for the agents,

so they are willing to follow action recommendations. Second, we assume that conditional

on each agent i’s signal si ∈ {crime, not}, the police observe signal yi ∼ π̂(·|si) ∈ ∆SP

(regardless of i’s type). This modification preserves the joint distribution of posterior crime

rates and action recommendations across the population. As a result, the agents continue

to follow action recommendations, and the police optimally choose search straetgy p. The

resulting equilibrium has the desired properties and attains crime rate r.

The second part of Lemma 2 means that in equilibrium, the police receive a noisy signal

of an agent’s behavior. We can impose this restriction upon solving the relaxed problem,

because the police care about the likelihood of crimes but do not directly care about the

agents’ types. Using the lemma, we show that the crime-minimizing signal structure of the

relaxed problem takes the form described in Figure 2.

Proposition 1 (Relaxed Problem with Endogenous Search Capacity). In the re-
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laxed problem, the following signal structure (S∗
P , S

∗
A, π

∗), characterized by tuple (ρ∗, c∗, α∗) ∈

(0, 1)2 × [0, 1), minimizes a crime rate:

1. The signal space is S∗
A = {crime, not} for the agents and S∗

P = {0, ρ∗} for the police.

In equilibrium, the agents follow action recommendations, and the police choose search

strategy p(0) = 0 and p(ρ∗) = ρ∗.

2. For every type x > c∗, the realized signals are (ρ∗, crime) with probability 1. For every

type x < c∗, the realized signals are (0, not) and (ρ∗, not) with probabilities α∗ and

1− α∗, respectively.

3. Tuple (ρ∗, c∗, α∗) satisfies EF [x̃|x̃ ≤ c∗] = (1−α∗)ρ∗, i.e., the agents who observe signal

“not” are indifferent between committing a crime and not.

Proof. Take any signal structure (SP , SA, π) and any equilibrium with the properties de-

scribed in Lemma 2. Part 2 of the lemma ensures that the police’s signal is a garbling of

an agent’s signal, generated by conditional distributions π̂(·|crime), π̂(·|not) ∈ ∆SP . It is

without loss to assume that the police’s signals are recommended search probabilities the

police follow in equilibrium.

First, we show SP ⊂ {0, ρ, 1} for some ρ ∈ (0, 1). If SP contains multiple interior search

rates ρ, ρ′ ∈ (0, 1), they must have the same posterior crime rate, i.e., r(ρ) = r(ρ′). For

example, if r(ρ) < r(ρ′), the police would profitably deviate by shifting search probabilities

from signal ρ to ρ′ without changing the total search capacity. However, r(ρ) = r(ρ′)

contradicts Part 2 of Lemma 2 that each signal leads to a distinct posterior crime rate.13 As

a result, SP contains at most one interior search rate, i.e., SP ⊂ {0, ρ, 1} for some ρ.

The unique interior search rate ρ (if exists) satisfies two properties. First, {ρ, 1} ⊂ SP

implies r(ρ) < r(1), i.e., the agents whom the police search with a higher probability (here,

1) have a higher posterior crime rate. Second, the police equate the marginal cost of search

with the marginal probability of detecting a crime. Hence total search P solves C ′(P ) = r(ρ).

13To be precise, this argument only implies that there exists some ρ ∈ (0, 1) such that the ex ante
probability of a signal belonging to SP ∩ (0, 1) \ {ρ} is 0 (instead of this set being empty). However, we can
replace all signals in SP ∩ (0, 1) \ {ρ} with signal ρ without affecting the equilibrium crime rate.
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In the second step, we show that if {ρ, 1} ⊂ SP , we can replace signals ρ and 1 with the

same signal σ to increase the search probability allocated to signal not. Indeed, after pooling

signals ρ and 1, the posterior crime rate r(σ) for signal σ satisfies r(σ) > r(ρ). Thus if we

let the police choose an optimal search strategy, the police will choose total search capacity

P̃ > P , because their marginal return to search at P is now r(σ)−C ′(P ) > r(ρ)−C ′(P ) = 0.

This pooling also reduces the police’s information and hence the mass of successful searches.

As a result, pooling signals ρ and 1 increases the expected search probability conditional on

signal not and relaxes its obedience constraint.

We now have SP = {0, σ} or {σ} for some σ > 0, and the obedience constraint for signal

not holds.14 We then gradually increase cutoff type c defined in Lemma 2 while maintaining

conditional distributions π̂(·|crime) and π̂(·|not) that garble an agent’s signals for the police.

Increasing cutoff c decreases the mass of agents with signal crime and the posterior crime

rate for every signal. Thus as c increases, the police will choose lower search rates for every

signal. At some cutoff c∗ ≥ c, the obedience constraint for signal not binds.15 The obedience

constraint for signal crime also holds, because the assumption C ′
(∫ 1

0
xF (dx)

)
> 1 implies

that the police’s optimal searches never make all agents weakly prefer to abstain from crimes.

In the last step, we consider two cases. If SP = {σ}, we obtain the desired result where

α∗ = 0 (signal 0 is irrelevant if α∗ = 0). Otherwise, the signal space is {0, σ}. In this case,

we replace the police’s signal with the corresponding posterior crime rate, resulting in a

signal space {r0, rσ}. We then split signal r0 into signals t0 and tσ that have posterior crime

rates 0 and rσ > r0, respectively. The police’s optimal strategy remains the same, i.e., the

police search signal rσ with a positive probability and never search signals t0 and tσ. But

signals tσ and rσ have the same posterior crime rate, so we can pool them into one signal,

say uσ. The police’s signal is now binary, i.e., signal r0 has posterior crime rate 0 and search

rate 0, and signal uσ has a positive crime rate and search probability. In terms of action

recommendations, the police’s signal space becomes S∗
P = {0, ρ∗} for some ρ∗ ∈ (0, 1].

14We cannot have SP = {0} because if the police do not search, all agents commit crimes, which incen-
tivizes the police to choose a positive search rate because of C ′(0) < 1.

15The reason is as follows. If c∗ = 1, then all agents receive signal not, the police choose search probability
0, and the obedience constraint for signal not is violated. Thus at some c∗ ∈ (0, 1), the agents become
indifferent between the two actions after receiving signal not.
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We now have signal structure (S∗
P , S

∗
A, π

∗) such that: S∗
P = {0, ρ∗} and S∗

A = {crime, not};

the agents with types above and below cutoff c∗ receive signals crime and not, respectively;

and the police’s signal divides the population into two groups, one with zero posterior crime

rate and the other with a positive posterior crime rate. This signal structure and equilibrium

satisfy Parts 1 and 2 of the proposition. Part 3 follows from the second step.

To see why partial revelation to the police can be optimal when the search capacity is

endogenous, suppose that a mass r ∈ (0, 1) of agents are committing crimes. Compare the

following two cases: In Case 0, the police have no information. In Case α, the police can

privately identify a fraction α of innocents (or equivalently, a mass α(1 − r) of innocents).

Moving from Case 0 to Case α affects the police’s strategy in two ways. First, the innocents

are on average less likely to be exposed to search, because the police do not search a fraction

α of them. Second, the police choose a higher total search capacity in Case α than Case

0, because the police can detect a crime with probability r
1−α(1−r)

> r by searching a mass

1−α(1− r) of unidentified agents in Case α, whereas the probability of detecting a crime is

r in Case 0. The crime-minimizing signal structure involves partial revelation (i.e., α∗ > 0

in Proposition 1) when the second effect dominates, so that the overall costs for the agents

of committing crimes increase as we move from Case 0 to Case α.

At the same time, consistent with the case of exogenous search capacity, the crime-

minimizing signal structure does not enable the police to identify criminals. To see why,

consider Case β in which the police can identify a fraction β of criminals. In contrast to

Case α, moving from Case 0 to Case β could reduce the police’s effort, because the probability

of detecting a crime in the unidentified population is (1−β)r
1−βr

< r. Moreover, as in the baseline

model, the information about criminals distorts the allocation of searches and reduces the

deterrent effect of search. Thus, allowing the police to predict crimes could increase a crime

rate by both reducing search effort and distorting the allocation of it.

5.2 Uniform-Quadratic Example

We now turn to the original setup in which agents observe their types. One candidate signal

structure that may implement the same outcome as in the relaxed problem (Proposition 1)
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is the following: First, the police privately identify a fraction α∗ of agents who have types

below c∗. Second, as to the remaining population, the police observe the truth-or-noise signal

with cutoff c∗, i.e., a signal coincides with an agent’s true type if the type is below c∗, and

otherwise the signal is a noise drawn from F (·|x̃ ≤ c∗). In equilibrium, the police search

agents with signal s with probability s
1−α∗ . Facing such a strategy, types below c∗ are indeed

willing to not commit crimes, because any agent with type x < c∗ believes that they will be

searched with probability (1− α∗) x
1−α∗ = x.

However, in general, the above strategy profile may not be an equilibrium. For example,

the police’s search strategy may be infeasible because it may specify a search rate above

1. Also, some types above c∗, who anticipate search probability E[x̃|x̃≤c∗]
1−α∗ , may abstain from

crimes, which leads to a different outcome from the relaxed problem. At the same time, the

signal structure constructed above indeed minimizes a crime rate in some settings (see the

appendix for the proof):

Claim 1. In the original setup where the agents observe their types, suppose that F = U [0, 1]

and C(P ) = L
2
P 2 with L ≥ 3+

√
5

4
≈ 1.31. There is a signal structure that attains the same

crime rate as in the relaxed problem (Proposition 1). This signal structure reveals a fraction

α∗ ∈ [0, 1) of the agents with types below c∗ and discloses the truth-or-noise signal with cutoff

c∗ regarding the rest of the agents. If L < 2, we have α∗ = 2−
√
2L > 0. If L ≥ 2, we have

α∗ = 0, i.e., the police observe the truth-or-noise signal with cutoff c∗.

As an example, we set L = 72
49

and describe the crime-minimizing outcome. The signal

structure becomes as follows: If an agent has type x ≤ 7
12
, the police observe signal 0 or x

with probability 2
7
or 5

7
, respectively. If an agent has type x > 7

12
, the police observe signal

s that is drawn from U [0, 7
12
] independent of the true type. Thus signal s = 0 reveals that

an agent’s type is below 7
12
, whereas any signal s ∈ (0, 7

12
] indicates that the agent’s type is

s or uniformly distributed on [ 7
12
, 1] with equal probability.

In equilibrium, the police search any agent with signal s ∈ (0, 7
12
] with probability 7

5
s and

never search agents with signal 0. If an agent has type x < 7
12
, the expected probability of

search is 5
7
· 7
5
x = x, so they weakly prefer to abstain from a crime. If an agent has type

x ≥ 7
12
, the expected probability of search is Ex∼U [0, 7

12
][
7
5
x] < x, so they prefer to commit a
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crime. Finally, any signal indicates that the agent is committing a crime with probability

1
2
, so the police are indifferent about how to distribute search capacity across agents with

positive signals.16 The above search strategy leads to total search capacity P ∗ = 49
144

. The

police’s marginal search cost is then C ′(P ∗) = LP ∗ = 1
2
, which indeed equals to the marginal

probability of detecting a crime.
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Appendix: Proof of Claim 1

The proof consists of two steps: We first use Proposition 1 to solve the relaxed problem. We

then turn to the original setup and construct a signal structure for the police that attains

the same crime rate as in the relaxed problem.

To solve the relaxed problem, we focus on signal structures that take the form described

in Figure 2. Instead of parameters (c∗, α∗, p∗), we use (c, α, p) to indicate that they may not

21



be the crime-minimizing signal structure. Recall that α is the probability with which the

police observe signal 0 conditional on that an agent observes signal not. Because we focus

on an equilibrium in which types above some cutoff commit crimes, a crime rate r pins down

the cutoff type through c = F−1(1− r).

We fix α ∈ [0, 1] arbitrarily and then determine cutoff type c and the unique positive

search probability ρ from the mutual best responses of the agents and the police. By Part

3 of Proposition 1, the equilibrium crime rate r(α) is determined by the condition that the

police’s optimal search strategy given crime rate r(α) makes the agents who observe signal

not indifferent between committing a crime and not.

We derive the expected search probability given signal not. As in Figure 2, if the crime

rate is r, the posterior crime rate for signal ρ is r
r+(1−r)(1−α)

. The police’s mass of searches

P then solves the first-order condition C ′(P ) = LP = r
r+(1−r)(1−α)

, or P = 1
L
· r
r+(1−r)(1−α)

.

Thus the expected search probability conditional on signal not is (1− α) P
r+(1−r)(1−α)

, or

I(r, α) ≜
(1− α)r

L[r + (1− r)(1− α)]2
.

The binding obedience constraint for signal not is written as

I(r, α) = Ex∼U [0,1][x|x ≤ F−1(1− r)]

⇐⇒ I(r, α) =
1− r

2
. (3)

At r = 0, we have I(0, α) = 0 < 1
2
. At r = 1, we have I(1, α) = 1−α

L
> 0. Moreover, I(r, α)

is concave in r.17 Thus as a function of r, I(r, α) crosses 1−r
2

exactly once and from below,

i.e., equation (3) has a unique solution in terms of r. Let r(α) be the solution. Then the

minimal crime rate in the relaxed problem is given by r∗ ≜ minα∈[0,1] r(α). However, instead

of solving this minimization problem, we first derive α(r) ≜ argmaxα∈[0,1] I(r, α) and then

determine the minimal crime rate r∗ through I(r, α(r)) = 1−r
2
. Because I(r, α) is concave in

17We have ∂I
∂r = L−1 (1−α)(1−α(1+r))

1−α(1−r) and ∂2I
∂r2 = L−1 −2α(1−α)2

[1−α(1−r)]2 ≤ 0.
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α,18 we can use the first-order condition to solve maxα∈[0,1] I(r, α). The solution is as follows:

α(r) =


1−2r
1−r

if r ≤ 1
2
,

0 if r ≥ 1
2
.

and

I(r, α(r)) =


1

4L(1−r)
if r ≤ 1

2
,

r
L

if r ≥ 1
2
.

Solving I(r, α(r)) = 1−r
2
, we obtain the minimized crime rate under the relaxed problem:

r∗ =

1− 1√
2L

if L ≤ 2,

L
2+L

if L ≥ 2.

Because the type distribution is uniform, a crime rate of r∗ means that an agent commits a

crime if and only if their type exceeds c∗ = 1− r∗.

We now show that if L ≥ L∗ = 3+
√
5

4
, we can implement crime rate r∗ in the original

problem. To do so, we modify the signal structure in Theorem 2 as follows: If x < 1 − r∗,

with probability α∗ = α(r∗), the police observe signal 0. Other parts of the signal structure

follow the truth-or-noise signal structure with cutoff c∗: The police observe signal x with

probability 1− α∗ if x ≤ c∗ and observe signal s ∼ F (·|x̃ ≥ c∗) whenever x ≥ c∗.

If L ≥ L∗, this signal structure has an equilibrium in which each agent commits a crime

if and only if x > c∗, and the police search agents with signal s with probability s
1−α∗ .

The agents’ strategies are optimal: Any agent with a type below c∗ is indifferent between

committing a crime and not because they anticipate search probability (1 − α∗) x
1−α∗ = x

in expectation. Any type x ≥ c∗ will face a search probability of 1−r∗

2(1−α(r∗))
< 1 − r∗ ≤ x,

where the first inequality uses α∗ < 1/2, which follows from L ≥ L∗. The police’s strategy is

also optimal: The police never search signal 0 and are indifferent regarding how to allocate

a given mass of searches across the positive signals. The choice of a total search capacity is

18We have ∂I
∂α = L−1−r[2r−1+α(1−r)]

1−α(1−r) and ∂2I
∂α2 = L−1 −2r2(1−r)

[1−α(1−r)]2 ≤ 0.
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also optimal: Indeed, the posterior crime rate for any positive signal is r∗

r∗+(1−r∗)(1−α∗)
, so the

total search capacity induced by the above search strategy equates the marginal cost with the

marginal crime rate because of the police’s first-order condition in the relaxed problem. Also,

L ≥ L∗ ensures that the highest search probability c∗

1−α∗ is below 1, so the police’s strategy is

well-defined. Finally, if L ∈ [L∗, 2), then we have r∗ = 1− 1√
2L

and α(r∗) = 1−2r∗

1−r∗
= 2−

√
2L.

If L ≥ 2, we have α∗ = 0, so the police’s signal reduces to the truth-or-noise signal structure.

□
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